

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D4.4 – Report describing SETAs

iv4XR – WP4 – D4.4

Version 1.8

December 2022

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR i

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2022

Actual Date 29/12/2022

Document Author/s Pedro M. Fernandes (INESC-ID), Rui Prada (INESC-ID), Saba
Ansari (UU), Marta Couto (INESC-ID), Manuel Lopes (INESC-
ID), Carlos Martinho (INESC-ID), Wishnu Prasetya (UU), Victor

Gabillon (THALES-SIX), Fitsum Kifetew (FBK), Frank Dignum
(UMU)

Version 1.8

Dissemination level Public

Status Final

This project has received funding from the European Union’s Horizon 2020

Research and innovation programme under grant agreement No 856716

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR ii

Document Version Control

Version Date Change Made (and if appropriate reason for

change)

Initials of

Commentator(s) or
Author(s)

1.0 25/10/2022 Initial document structure and contents PF

1.1 22/11/2022 Added OCC and Coverage Sections SA

1.2 05/12/2022
Completed the Components of User

Experience Section
PF

1.3 09/12/2022 Completed and reviewed sections 1-6 PF

1.4 13/12/2022
Added details on the CS sections and overall

minor edits
RP

1.5 13/12/2022
Added details about the UX framework and the
work on Cognitive Load work

MC

1.6 15/12/2022
Reduced the size of some sections and other
minor edits

PF

1.7 28/12/2022 Added the executive summary PF

1.8 29/12/2022 Final arrangements for submission RP

Document Quality Control

Version
QA

Date Comments (and if appropriate reason for
change)

Initials of QA Person

1.6 20/12/2022 Review and minor changes ML

Document Authors and Quality Assurance Checks

Author
Initials

Name of Author Institution

RP Rui Prada INESC-ID

PF Pedro M. Fernandes INESC-ID

SA Saba Ansari Utrecht University (UU)

MC Marta Couto INESC-ID

ML Manuel Lopes INESC-ID

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR iii

TABLE OF CONTENTS

Executive Summary 1

Section 1 - Introduction 2

Section 2 - The Modular SETA 3

Section 3 - UX Metrics 6

Section 3.1 - Emotion Prediction 6

Section 3.1.1 - OCC Prediction - Model Based 6

Section 3.1.2 - Emotional Prediction Using the PAD Model and Machine Learning 11

Section 3.2 - Cognitive Load Prediction 16

Section 3.3 - Motion Sickness Prediction 18

Section 3.4 - Difficulty Estimation 20

Section 3.5 - Validating the Plot of Interactive Narrative Games 22

Section 4 - UX Behaviour 23

Section 4.1 - Coverage Based Behaviour 23

Section 4.2 - Persona Agents - Human-like Behaviour 27

Section 5 - Example Workflows 32

Section 5.1 - Using Formal Experience Specifications for Testing 32

Section 5.2 - Using UX Test Agents for Experience Based Procedural Content Generation 34

Section 6 - Conclusions 35

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 1

EXECUTIVE SUMMARY

This deliverable presents a summary of the Socio-Emotional Testing Agents (SETAs) that were
developed as part of WP4. It begins by explaining the modular architecture of the SETAs and
then presents the several components that were developed during the iv4XR project. These
components pertain both to the behaviour of the SETAs as well as the automatic measurement
of different components of user experience. At the end of the deliverable, we provide example
usages of the SETAs and of how the different components can be used by designers to create
tailored made user experience testing agents for their applications.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 2

SECTION 1 - INTRODUCTION

In a world where agile software development is becoming the norm, which entails quick

development sprints and a reliance on automatic testing, there is concern for the testing of User

eXperience (UX) during development. This is especially relevant for complex systems like

Augmented Reality (AR) and Virtual Reality (VR) applications. Currently, testing UX on such

systems requires testing with humans, which is both money and time consuming. It becomes

infeasible to test the implications to UX each time developers change something in the application

as it would slow down the development process too much. However, having access to quick and

on demand estimates of UX would allow developers to create better and more user friendly

applications. It would also greatly benefit developers and environment designers to know what

actions and paths users are most likely to take.

The creation of Socio-Emotional Testing Agents (SETAs) is our approach to begin solving these

problems and allow UX concerns to be tested automatically during development, aiding the

creation of better applications. SETAs are agents capable of interacting with an environment and

providing estimates of different components of UX. Such capabilities allow them to be used by

developers and testers to quickly and automatically have a better understanding of whether their

UX design goals are being met or not. These agents could, for example, allow developers to

automatically know which areas of an environment are not providing enough stimulus to users or

which ones are too overwhelming. They could also give developers an idea of how different the

experience would be to different users.

Figure 1: The different components of UX (the user interaction with the system in a given environment),

and the variables contributing to User eXperience.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 3

To have a comprehensive view of UX, we gathered previous definitions in literature and defined

UX as emerging from a user's interaction with a product/service/software. UX is a consequence

of prior experiences, attitudes, skills, habits, and personality. It is a subjective, situated, complex,

and dynamic encounter.

To evaluate UX, we need to consider the user, the product/service/software, the context or

environment, and the variables that emerge during the interaction itself. Figure 1 provides an

overview of a UX framework we constructed, focused on automated evaluation of UX. To move

from the current practices towards automated tests it is important to have clear definitions and a

modular structure to help define test agents.

The interactions are situated i.e., they take place in a given context. For the environment we

consider three layers: the temporal layer, the social layer and the physical layer. The temporal

layer considers long-term interactions. Most products/services/software are not single use and so

a good UX evaluation should consider multiple interactions over time. The social layer relates to

individual UX experiences that are constructed in social interaction. Finally the physical context

relates to physical aspects of the environment that can affect the interaction experience.

In the environment we see the user interacting with the system. We have user variables and

system variables that come together when the user is using the system, for example executing a

task, as this will produce the interaction variables. At the beginning of an interaction the user has

a set of fixed variables (in blue) and variables that should change with the interaction. The

interaction is divided into instrumental and non-instrumental variables. All variables are expected

to change in each interaction. The last box represents the system variables which we consider to

be fixed at the beginning of the interaction. These are variables of the system that will impact the

interaction and consequently, the UX. The SETAs work developed within the lifetime of the project

aims at covering some of the aspects illustrated in Figure 1.

SECTION 2 - THE MODULAR SETA

User experience (UX) is a broad, complex and multi-faceted concept. It encompasses many

different components of human experience along with characteristics of the system itself and the

surrounding environment (Figure 1). It is therefore unfeasible to have a single, unidimensional

measure of UX. What can be done is the measurement or prediction of different components of

UX according to what is most relevant to testers and designers. With this in mind, we have

implemented our SETAs to be modular by design. This means that they can be run with different

modules, each endowing them with the ability to predict different components of UX. They can

also be easily expanded with new modules to allow them to predict novel components of UX as

new predictors are created.

For example, to the designer of an aeroplane piloting simulation, the most relevant components

of UX to be predicted might be cognitive load and the level of arousal. It might be of little relevance

the level of happiness or enjoyment of the user, whereas those might be the most relevant

component for the designer of a video game. It is thus important to allow the SETAs to be flexible

to the system under test and the goals of the designers.

The same modular concept applies to the behaviour of the SETAs. Different systems under test

will require agents that behave differently to test their UX. Even the same system might require

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 4

agents that behave in different ways for different scenarios and UX components being tested. For

some systems, it might be feasible and logical to test UX with an agent that tries to cover all

possible actions and behaviours. For other systems, like a real-life simulation or a complex video

game, that might be unfeasible given the action space, as well as irrelevant for UX testing. In

most cases, agents that behave randomly would provide unreliable and possibly useless

information regarding the UX of a system. A further discussion about the relevant characteristics

for the behaviour of UX testing agents will be presented in Section 4.

Figure 2: The modular architecture of the SETAs.

We therefore designed our SETAs with a bipartite nature, having a behavioural component,

responsible for deciding the actions taken by the agent, and a UX metrics component, responsible

for making predictions related to the several components of UX. Both these components are

interdependent and needed for a UX testing agent. The behaviour of the agent will affect the

measurements done by the UX metrics components, as different traversals of a level or situation

will likely lead to different UX.

With this modular SETA architecture (Figure 2), we allow designers and testers to choose which

existing modules are most relevant for their needs and even develop new modules which can be

easily integrated with the existing architecture and work alongside other modules.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 5

Figure 3: The interaction between the designers, the SETAs and the system under test.

In Figure 3, we find a diagram of the relationship between the designers, the SETAs and the

system under test. The designers need to define which UX Metrics modules and Behavioural

modules will be used as well as specify the parameters for those modules. By doing so, they

define the SETA that best matches their testing needs. Once defined, the SETA will interact with

the System Under Test (SUT). The evolution of the state of the system and the internal state of

the agent (UX Metrics) will then be used to provide the designer with information about the SUT.

If Design Goals have been defined, representing the UX objectives the designer had in mind when

designing a scenario, then the designer will also be informed about which scenarios satisfy the

Design Goals for the used SETAs and which do not.

In the next section, we will describe the UX metrics modules developed throughout the life-span

of the project. We will then describe the behavioural modules in Section 4. We will then give

examples of how the combination of behaviour and UX metrics can be used to help designers

meet their testing needs in Section 5.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 6

SECTION 3 - UX METRICS

As was discussed in Section 2, UX is a complex concept which has many underlying components.

Our approach to testing UX is therefore not to try and measure UX as a whole but to look at these

different components and try to test them individually. As such, in the following subsections, we

will present the solutions we have developed for the testing of a number of UX components. These

modules of UX testing can be used simultaneously or in any combination, depending on the goals

of the designer and the system under test.

We will here describe modules for: emotion prediction; cognitive load prediction; motion sickness

prediction; difficulty estimation; and validating the plot of interactive narrative games.

SECTION 3.1 - EMOTION PREDICTION

We have developed two modules for emotion prediction, one being model based and the other

based on machine learning. The approaches require different types of setup from the designers

and testers and are best suited for different systems under test and testing scenarios. The model

based approach doesn’t require training data but requires expert knowledge. The machine

learning approach doesn’t require expert knowledge but requires training data. Both approaches

will be described in further detail in the following subsections.

SECTION 3.1.1 - OCC PREDICTION - MODEL BASED

User eXperience and emotions are tied to human cognition. Cognitive scientists and

psychologists have been investigating emotions and its relation with experience for decades,

leading to the creation of theoretical models of emotion that provides a more coherent outlook of

cognitive processes. According to appraisal theories of emotions, common patterns can be found

in the emergence of the same emotion. These patterns are given as a structure of emotions by

the Ortony-Clore-Collins (OCC)1 theory of emotions. Thus, a model-driven approach derived from

a well-grounded theory of emotions, such as OCC, is sensible when access to sufficient data is

not possible. Each of the emotion types listed in Figure 4 is specified as described in the OCC.

1 Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. cam (bridge university press. Cambridge, England (1988)

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 7

Figure 4: Structure of emotions according to the OCC model

Our desire to develop a model-driven approach led us to introduce a transition system to model

event-driven emotions based on the OOC cognitive theory of emotions. It is essentially a

computational model that can simulate players emotions during a game-play by replacing a

human player with an automated agent with an emotion model. The original OCC theory gives a

cognitive structure for 22 emotion types, viewed as cognitive processes where each emotion type

is elicited under certain conditions (Figure 4).

We introduced a formal model for event-driven OCC emotions using an event-based transition

system to serve as the foundation of our automated UX testing approach. These emotions are:

hope, joy, satisfaction, fear, distress, and disappointment (six from the aforementioned OCC’s full

set of 22) for a single agent simulation where the agent's emotional state changes only by system

under test dynamism expressed through events to the agent. A given system under test is treated

as an environment that discretely produces events triggered by the agent's actions or

environmental dynamism such as hazards. The event tick represents the passage of time. The

emotion model of an agent is defined as a 7-tuple transition system M:

(𝛴, 𝑠0, 𝐺, 𝐸, 𝛿, 𝐷𝑒𝑠, 𝑇ℎ𝑟𝑒𝑠)

● 𝐺 is a set of goals that the agent wants to achieve; each is a pair ＜𝑖𝑑, 𝑥＞ of a unique

goal name (𝑖𝑑) and significance degree (𝑥).

● 𝛴 is the set of M's possible states; each is a pair ＜𝐾, 𝐸𝑚𝑜＞:

○ K is a set of propositions the agent believes to be true. It includes, for each goal g,

a proposition status(g,p) indicating its confirmation or disconfirmation status with p

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 8

∈ {achieved, failed, proceeding}, if g has been achieved or failed, and a proposition

𝑃(𝑔, 𝑣), with v ∈ [0..1], stating the agent's current belief on the likelihood of

reaching this goal.

○ Emo is the agent's emotional state represented by a set of active emotions, each

is a tuple <ety, w , g, t0>, ety is the emotion type, w is the intensity of the emotion

respecting a goal g, and triggered time t0.

● s0 ∈ Σ is the agent’s initial state.

● E specifies the types of events the agent can experience

● δ is M ’s state transition function; to be elaborated later.

● Des is an appraisal function; Des(K, e, g) expresses the desirability, as a numeric value,

of an event e with respect to achieving a goal g, judged when the agent believes K. OCC

theory has more appraisal factors, but only desirability matters for aforementioned types

of emotion.

● Thres: thresholds for activating every emotion type.

One or multiple emotions can be activated by an incoming event (except tick). This is formulated

as follows:

𝑛𝑒𝑤𝐸𝑚𝑜(𝐾, 𝑒, 𝐺) = {⟨𝑒𝑡𝑦, 𝑔, 𝑤, 𝑡⟩ | 𝑒𝑡𝑦 ∈ 𝐸𝑡𝑦𝑝𝑒, 𝑔 ∈ 𝐺, 𝑤 = 𝜀𝑒𝑡𝑦 (𝐾, 𝑒, 𝑔) > 0

where w is the intensity of the emotion ety towards the goal g ∈ G and t is the current system

time. Upon an incoming event, the above function is called to check the occurrence of new

emotions as well as re-stimulation of existing emotions in Emo for every g ∈ G. 𝜀𝑒𝑡𝑦 (𝐾, 𝑒, 𝑔)

internally calculates an activation potential value and compares it to a threshold 𝑇ℎ𝑟𝑒𝑠𝑒𝑡𝑦; a new

emotion is only triggered if the activation potential value exceeds the threshold. These thresholds

might vary according to players’ characters and their moods. For instance, when a person is in a

good mood, their threshold for activating negative emotions goes up, which conveys how they

become more tolerant to feeling negative-valenced emotions. As examples, the activation

functions for hope and fear emotions, based on provided definitions in the OCC theory, are as

follows:

● Hope is defined as being pleased about the prospect of a desirable consequence of event

in OCC theory which is formalised in the defined transition system M as follows:

 𝜀ℎ𝑜𝑝𝑒 (𝐾, 𝑒, 𝑔) = 𝑣′ ∗ 𝑥 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑒

, provided 𝑔 =＜𝑖𝑑, 𝑥＞ ∈ 𝐺, 𝑃(𝑔, 𝑣) ∈ 𝐾, 𝑃(𝑔, 𝑣′) ∈ 𝑒(𝐾), 𝑎𝑛𝑑 𝑣 < 𝑣′ < 1.

● Fear is defined as being displeased about the prospect of an undesirable consequence of

event in OCC theory which can be formalised in the transition system M as follows:

𝜀𝑓𝑒𝑎𝑟 (𝐾, 𝑒, 𝑔) = (1 − 𝑣′) ∗ 𝑥 − 𝑇ℎ𝑟𝑒𝑠𝑓𝑒𝑎𝑟

, provided 𝑔 =＜𝑖𝑑, 𝑥＞ ∈ 𝐺, 𝑃(𝑔, 𝑣) ∈ 𝐾, 𝑃(𝑔, 𝑣′) ∈ 𝑒(𝐾), 𝑎𝑛𝑑 0 < 𝑣′ < 𝑣.

For further explanation of the model and formalisations of emotions, please see2.

2 Ansari SG, Prasetya IS, Dastani M, Dignum F, Keller G. An Appraisal Transition System for Event-Driven Emotions in Agent-Based Player

Experience Testing. In International Workshop on Engineering Multi-Agent Systems 2021 May 3 (pp. 156-174). Springer, Cham.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 9

The OCC model exists as a UX metrics module of SETAs to address affects and emotions. There

are also characteristics that the designer needs to specify in the agent to resemble a certain

character of players in the OCC model, such as: a player's goals and the goals priorities, the

player's initial mood and beliefs before playing the game, the desirability/undesirability of incoming

events for the player and how they affect goals' likelihoods. E.g., a player might experience a high

level of positive emotions on defeating an enemy in a game, while for another player who prefers

to avoid conflicts acquiring a gold bar could be more desirable. These characteristics are

addressed as input parameters of SETAs in Figure 3. PX is the terminology applied to UX in

games. Specifically, the model is used for Lab Recruits which is a 3D Unity game which has

different replayable levels and is connected to the iv4XR framework.

Figure 6a shows a floor plan of a Lab Recruits level exposed to PX testing using our approach.

The goal is for the player to escape the level by reaching the exit room circled in red. Access to

this room is guarded by a closed ’final door’. Figure 5b and 5c show two provided setups with the

different amounts and locations of fire hazards. The agent will lose health points by passing each

fire hazard. These setups are examples of choices considered by designers, although being

currently simple, as to which one would lead to better PX. As mentioned earlier in this section, a

developer sets needed inputs of the model such as the goal set, initial likelihood of each goal, the

desirability of events for each goal, the threshold and decay rate of emotions in SETAs input

parameters. A test agent is deployed, through the iv4XR framework, set with multiple goals,

though here we will only discuss the most significant one, namely completing the level. Initially,

the agent is assumed to believe that the likelihood of achieving this goal is 0.5. As the agent

progresses, its belief on the likelihood of completing the level changes, depending on the number

of opened doors as well as remaining closed doors. Opening each door is assumed to have a

desirable consequence for the agent because it increases the chance of the agent to complete

the level.

Figure 5: A simple level under test in Lab Recruits with two different setups

With assigning the level under test to SETAs, an intelligent test agent is run through the level

using tactics provided in iv4xr framework for the agent to do decision making and behave. Then,

the OCC model in UX metrics component decides about its internal emotional states of the agent

based on perceived consequences of actions the agent took as well as environment dynamisms.

The agent’s emotional state keeps getting updated until the agent successfully reaches the exist

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 10

room or dies. Then a report of experienced emotions in terms of timeline graphs and heatmaps

will be produced for the designer.

The timeline of emotions in setup 1 and setup 2 in Figure 6 shows that the trend of positive

emotions is actually quite similar, although with a smaller level of hope in the setup 2. However,

comparing the result of setup 2 with setup 1 reveals something interesting. Fear shows a quite

different trend in setup 2 (Figure 6b). It is stimulated multiple times during the execution, whereas

the same emotion, despite having numbers of fire hazards, has been never stimulated in setup 1

(Figure 6a). In other words, having some fire hazards may not necessarily trigger fears in the

agent unless the agent passes a certain number of fire hazards. Such a comparison can be useful

for designers e.g., to determine the amount and placement of hazards to induce a certain degree

of fear along with keeping the chance for satisfactory experience of accomplishing the goal. In

our case, setup 1 is less likely to thrill the player, whereas setup 2 has a better balance of the

quantity and placement of the fire, by generating fear and even in a relatively close time interval

with a rise in hope, while still keeping the level survivable. Moreover, this information can be

shown in terms of heat maps, providing spatial information of the agent’s emotions in a set up.

Figure 7 shows heatmaps of positive and negative emotions for setup 2.

Figure 6: Timeline of emotions in Setup 1 and Setup 2.

Figure 7: The heat maps of triggered emotions in setup 2.

Black= very low intensity (or no emotion), white= walls, grey=unexplored area.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 11

The proposed emotional modelling can be used for any designed Lab Recruits level. Figures 8

and 9 show the result of an experiment over a medium size level in Lab Recruits.

Figure 8: Timeline of emotions in a medium size level called Lab1 in Labrecruits

Figure 9: Heat maps of emotions in Lab1

SECTION 3.1.2 - EMOTIONAL PREDICTION USING THE PAD MODEL AND MACHINE LEARNING

Another of the implemented modules of our SETAs that focuses on emotional prediction is based

on the PAD model of emotion3. This model describes human emotions based on three

dimensions: Pleasure; Arousal; and Dominance. For this module, we used machine learning to

train a predictive model for the dimensions of the PAD model based on data collected from the

system under test. A representation of the machine learning process can be found on Figure 10.

3 Russell, J.A. and Mehrabian, A., 1977. Evidence for a three-factor theory of emotions. Journal of

research in Personality, 11(3), pp.273-294.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 12

Figure 10: A graphical representation of the machine learning approach. The main idea is to use as training

inputs the internal state of the system under test along with the state of the agent. Using these inputs, we

can then train a predictive model to predict the emotional dimensions based on continuous self reporting of

users. The use of user self reporting might appear to go against the objective of automation, but the user

traces would only need to be collected once to train the model. Once the model is trained, it can then be

used whenever necessary without the need of further user data.

For the sake of training the model, a game named “Flower Hunter” was developed, inspired by

old-school top-down 2D games like Legend of Zelda. It was designed to be easily modifiable, fast-

running, compatible with Python machine learning libraries, and ultimately entertaining enough to

motivate users to play it. Screenshots of the game can be found on Figure 11.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 13

Figure 11: Screenshots of the "Flower Hunter'' game. The player, represented by a black and yellow ball,

needs to traverse a field riddled with enemies, health providing rice cakes, and coins, in order to find a pink

flower (shown on the bottom right screenshot). Once the player finds this flower, the game is over and the

player won. If the player loses all its health points by touching enemies, then the game ends and the player

lost. The player can use a sword to fight and kill the enemies (shown in the bottom left screenshot).

The inputs used to train the predictive model were all numerical in nature and encoded the time

passed since several relevant events in the game, the number of each type of agent seen by the

player and the distance to those objects. These inputs were chosen to be as abstract as possible

and thus applicable to many different genres of games and simulations.

To train a machine learning model, we required information about the three emotional dimensions

of a player as he traversed the game, as we believed it would be more meaningful to the testers

and designers to know how the emotional dimensions evolved over time and space opposed to

only having a final estimate of the value for each dimension for the totality of the interaction

between the user and the system. Furthermore, the closest to continuous this information could

be, the better, as it would allow us to create a finely grained model. As such, we decided to use

continuous, after the fact, annotation, inspired by previous works that used a similar approach4,5.

4 Lopes, P., Yannakakis, G.N. and Liapis, A., 2017, October. Ranktrace: Relative and unbounded affect

annotation. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction
(ACII) (pp. 158-163). IEEE.

5 Melhart, D., Liapis, A. and Yannakakis, G.N., 2021. The Affect Game AnnotatIoN (AGAIN) dataset.

arXiv preprint arXiv:2104.02643.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 14

This annotation worked as follows. The user, after playing a given level of the "Flower Hunter"

game, was asked to annotate one of the PAD emotional dimensions. He did so by seeing a

recording of the level he had just played while using the up and down arrows on a computer

keyboard to control a line on the screen, which represented the evolution of the emotional

dimension throughout the traversal of the level. Two screenshots taken during the annotation

process can be found on Figure 12.

Figure 12: Screenshots of the continuous annotation process used. The black line that is seen on the screen

was controlled by the user, going up or down according to the perception the user had of the dimension

being annotated having increased or decreased, respectively.

We chose to have each user annotate only one of the PAD dimensions. We did this both to spare

the user 3 consecutive annotations after playing a single level, but also to ensure the user kept in

mind the dimension that he was annotating without getting confused and inadvertently mixing the

dimensions. By annotating a single dimension, the user only had to remember a single definition

for the dimension being annotated, thus, in principle, ensuring more reliable annotations. This

came, however, at the cost of having only one of the dimensions annotated for each user trace

we had.

We had 91 participants play three "Flower Hunter" levels and self report their levels of a given

PAD dimension. Each participant was randomly assigned a dimension at the beginning of the

experiment and given a definition of said emotional dimension. The participants could only

proceed with the experiment once they confirmed that they understood the definition for their

assigned emotional dimension. These participants were students of Psychology, which might

enable them to more easily understand the definitions of the PAD dimension. The levels used for

the experiment can be found on Figure 13. These maps had the same topology but different

distribution and quantity of objects and enemies. In the end, we had 264 annotated traces.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 15

Figure 13: The three maps used for the collection of data. As can be seen, all the maps had the same

topology yet the location and number of objects differed between them.

The several input values and the output value were collected with a frequency of 8 Hz. To tackle

the sequential nature of the data, we decided to translate the input and output into overlapping

slices of variable length (for example, one second), and using the variation of the values within

that slice of time to train the model instead of the absolute values themselves. An exception were

the input values related to the time elapsed since an event, which were also fed to the model in

their absolute form as to allow the model to be aware of long periods of time where a given even

didn't occur, for example, being aware that the player hasn't seen an enemy in over a minute.

The output slices were further classified as "increasing" or "decreasing/stable", transforming a

prediction problem into a classification one. The absolute values for the emotional dimensions

varied greatly between different users and didn't provide much information by themselves. To

know if an emotional dimension was increasing or not was, however, a valuable information.

We then discarded 3 traces where there was no change to the emotional dimension throughout

the entire play-through. Lastly, there were considerably more instances of the "decreasing/stable"

class than of the "increasing" class. As such, the training data required balancing. From several

methods tried, balancing using random over sampling proved to give the best results.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 16

Figure 14: Three examples of traces and self reporting for the Arousal dimension. These traces are for Map

2 and show how different users can have very different experiences depending on the traversal of the map

and their own different perceptions for the reported dimension.

After gathering and processing the data as described in the previous section, we were now faced

with a traditional binary classification problem. We experimented with several different machine

learning algorithms, such as neural networks, decision trees and state vector machines. In the

end, the random forests algorithm was the one that provided the best results.

A different predictive model had to be trained for each one of the PAD emotional dimensions. As

such, we achieved a different accuracy for each dimension. The accuracy was based on the

correct classification of 1 second slices using the "leave one out" method. For the Pleasure

dimension, we were able to achieve an accuracy of 72.8%. For the Arousal dimension, we were

able to obtain a slightly better 73.1% of accuracy. However, our approach fared considerably

worse on predicting the Dominance dimension, which we were only able to predict with ≈60%

accuracy.

SECTION 3.2 - COGNITIVE LOAD PREDICTION

A significant part of XR user experience results from the interaction of each user with the system

while solving a task in the environment. During interaction with an XR system, each user has

different exchanges while navigating through the design space of the system, which will create

distinct user experiences (UX). Aside from the emotions and social motivations, cognitive abilities

also impact appraisal, and, indirectly, how the user navigates the space. Being able to understand

how the interactions reflect these dimensions of the experience would help designing more

personalised systems, resulting in better UX.

We addressed the prediction of Cognitive Load, meaning the amount of information a person is

conscientiously processing at a given moment. The cognitive load has a close relationship with

attention mechanisms. We aim to create a toolset in the context of automatic play-testing that we

can extend to other types of systems. To create this toolset, we explored two different approaches.

For the first one we focused on the TBRS (Time-Based Resource Sharing) memory model. For

our second approach we created a plugin that follows a secondary task paradigm. The toolset,

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 17

based on the TBRS memory model6, aims at providing a measure of the cognitive load (a

percentage) that the user is expected to experience while going through a particular task in a

specific context. Autonomous agents navigating and exploring a virtual environment need some

parameterisation of what grabs the agents’ attention (e.g., interacting with an object or dodging

enemies’ attacks). We call these “attention-grabbing events”, measured in seconds (duration of

the event). The toolset will provide a set of methods (API) that need to be added/called from the

code of the software undergoing testing, each time an attention-grabbing event occurs.

After finalising a task, the toolset computes an estimate for the cognitive load experienced by the

user, based on the sum of the attention-grabbing events, i.e., the total amount of time in which a

participant was fully paying attention to a task, and the total duration of the task.

We can integrate this value into automated testing procedures by using assertions in the code

that check whether the estimated value of the cognitive load is within a specific desired range. If

not, the toolset will be able to present a short report to identify possible problems with the current

implementation (based on the data gathered) and shed some light on the direction to take in future

development.

To evaluate our model, we created the game “Way-out” (Figure 15), in which the player is

escaping from a small underground complex. We designed the game to allow for the

parameterisation and control of several attention-grabbing events, and the manipulation of several

dimensions of the experience, such as the time required to navigate through the game, the

complexity of the task based on the number of interactions required to overcome them, as well

as the number of items a player needs to keep in mind to solve the different puzzles. By comparing

the reported cognitive load of the participants to the value computed by the TBRS theoretical

model, we aim at evaluating whether this model is an appropriate predictor of the cognitive load

reported by the players for the whole experience.

We conducted a user study which showed that the attention grabbing events are correlated with

higher reported cognitive load. However, our time manipulation was not successful as the game

is self-paced.

We also worked on a plugin that allows for a more fine-grained measure of cognitive load. The

plugin introduces a secondary task in the game. Secondary task paradigm, common in memory

studies, introduces a secondary task that competes for the same resources as the main task.

6 Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. The

cognitive neuroscience of working memory, 455, 59-80.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 18

Figure 15: Screen shots from the ‘Way out’ game

Increased reaction times to the secondary task, i.e., longer time intervals between the stimuli and

the response, indicate higher cognitive load. This type of task has the advantage of allowing us

to pinpoint areas in the game where the user experiences higher cognitive load and we can relate

them to the concentration of attention grabbing events. We started by using the same game,

“Way-Out'' because we already have information on the overall cognitive load imposed by the

levels we tested, and information on the attention grabbing events. We created two versions of

the secondary task. One is integrated in the game scenario and the other is not. For the integrated

version we tell participants that sometimes the golem (the main character) overheats from time to

time. When they see smoke coming out of the golem’s head, the participant needs to press the

spacebar to prevent the golem from overheating. If they let the golem overheat three times, the

game finishes. On the other version (not integrated in the game narrative), the participants are

told that a red dot will appear from time to time in the centre of the screen, when that happens,

they need to press the spacebar. If they miss three times they lose the game. We are currently in

the process of collecting data for this experiment. We hope to have a tool that developers can use

to assess the cognitive load imposed by their games (the plugin) and also want to check the data

being collected against the attention grabbing events identified in the first study to see if they

remain a good predictor of Cognitive Load.

SECTION 3.3 - MOTION SICKNESS PREDICTION

Cybersickness (CS) is one of the factors that can significantly hinder user experience in immersive

Virtual Reality (VR) games and simulations. CS is a malady that may cause feelings of Motion

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 19

Sickness (MS) such as nausea, general unwellness, blurry vision, among others, as a result of

VR immersion. While there are techniques to reduce the likelihood of CS occurrence, developers

cannot confidently foresee their need as current CS severity measuring tools, such as

questionnaires, detect it only post-factum, thereby requiring intensive human testing to assess

what CS reduction measures must be taken.

With this in mind, we have developed a machine learning model capable of automatically

predicting CS occurrences of a VR experience based on Head-Mounted Display (HMD) eye-

screen video and user control input. We collected data from 22 participants while immersed in a

stylized flight simulator VR game depicted on Figure 16 that we used to develop the model.

Participants reported feelings of CS, at every minute, using the Fast Motion Sickness

Scale7. We applied several machine learning approaches and finally settled in a Random Forest

model that is able to predict CS with an accuracy of 72.9%. The algorithm used features like the

colour of the image pixels, the video optical flow, and user input to predict the occurrence of CS

in two classes (present or not) for each minute of video. Our approach is more suited to automated

testing than the previous approaches, as it only needs the actions performed and the video

presented to the user, while others8 depend on physiological measures of players.

We have yet to test whether the predictive model trained using one VR game would be applicable

to another game with similar levels of accuracy or if new training is required for each different

game. Even if new training is indeed required, the approach can nonetheless be used to save

countless hours of user testing, as the predictive model can be reused as many times as needed

after being trained.

Figure 16: Faceted Flight - A stylized stunt flight VR simulator that was used to develop and test our CS

predictive model.

7 B. Keshavarz and H. Hecht. Validating an efficient method to quantify motion sickness. Human factors,

53(4):415–426, 2011.
8 R. Islam, Y. Lee, M. Jaloli, I. Muhammad, D. Zhu, P. Rad, Y. Huang, and J. Quarles. Automatic

detection and prediction of cybersickness severity using deep neural networks from user’s physiological
signals. In International Symposium on Mixed and Augmented Reality (ISMAR), pp. 400–411. IEEE,
2020.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 20

SECTION 3.4 - DIFFICULTY ESTIMATION

The difficulty of a level, and more importantly, the progression of difficulty of a series of levels,

can have a significant impact on the user experience and learnability of a game. As such, we

have developed methods to rank a series of levels in terms of their difficulty.

We have decided to use different types of errors as a way to measure the difficulty of a level. The

main rationale behind this approach is that a level can be considered more difficult than another

if the same degree of errors to the perfect sequence of actions leads to a worse outcome. For

example, if a random timing error introduced to a perfect gameplay leads to the agent failing to

complete a level 70% of the time whereas it only leads to the agent’s failure 30% of the time in

another level, we consider that the first level is harder than the second, at least regarding timing

related mistakes from the player.

We have implemented 3 different error generation methods and used them to order a number of

levels of a platformer game in terms of difficulty. The ranking is done by training agents to solve

the levels based on reinforcement learning and then adding noise to the solution. The lesser the

amount of a given type of noise needed to make the agent unable to solve the level, then the

greater the predicted difficulty of the level. An example ranking by increasing difficulty of the levels

of a platformer like game based on timing errors can be found in Figure 17.

Figure 17: Ranking of a set of 22 levels based on increasing difficulty.

The indicators of difficulty also help evaluate the hardness of finding a weakness in the system

under test. In the intrusion scenario for testing the patrol of a powerplant in the MAEV platform,

one of the pilots of the iv4XR project, we use indicators of difficulty in order to evaluate how good

the patrol is. The indicators are based on analysing the interaction of the intruder agent with the

patrol. Moreover, in the case of the powerplant use-case, we not only have one intruder agent but

a full archive composed of a population of successful RL intruder agents. This is the case

because, to solve the powerplant problem, we used a QDRL (Quality-Diversity Reinforcement

Learning) approach that tries to find multiple and diverse solutions to the same RL problem. We

leverage the population of RL intruders in order to compute more precise indicators. We used

three types of indicators. The first one is the stress indicator, being the average distance during

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 21

one intrusion episode between the intruder RL agents and the fixed patrol guards. Figure 18 below

is a visualisation example of how each intruder from the QDRL archive is stressed by the proximity

of the guards (in blue) as illustrated by the colour of each intruder going from green (not stressed)

to red (stressed).

Figure 18: the stress indicators on how close the intruder is to the patrol.

The second indicator is the delay indicator. For each agent we compute how sensitive they are to

delays in the execution of their actions. If adding delays to execution of the actions is harmless to

the performance of the agent, then it is an indicator that the difficulty is small. We report in Figure

19 (left) how our agents’ performance evolve with delays. Each curve corresponds to a different

intruding scenario with a different patrol pattern. The y axis is the percentage of agents in the

population that successfully intrude, and the x axis is the amount of the delay added to the

execution of an action.

Figure 19: Delay indicator, robustness to delay in the execution of the action.

The third indicator is the noise indicator. For each agent we compute how sensitive they are to

noise added to their actions. If adding large noise of the actions is harmless to the performance

of the agent, then it is an indicator that the difficulty is small. We report in Figure 19 (right) how

our agents' performance evolves with noise. Each curve corresponds to a different intruding

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 22

scenario with a different patrol pattern. The y axis is the percentage of agents in the population

that successfully intrude, and the x axis is the amount of the noise added to an action.

SECTION 3.5 - VALIDATING THE PLOT OF INTERACTIVE NARRATIVE GAMES

Many games and simulations include interactive dialogue. When the choices made during such

dialogues impact the environment and possible future choices, then it is paramount that these

interactive narratives are well tested to ensure a positive UX.

As such, we study interactive narrative games to develop a model consisting of a set of metrics

for testing interactive dialogues. Using this model, we developed a prototype for the Story

Validator tool. This tool allows game writers to experiment with different hypotheses and narrative

properties in order to identify inconsistencies in the authored narrative and predict the output of

different playthroughs with visual representation support. We conducted a series of user tests

using the Story Validator (Figure 20), to investigate whether the tool adequately helps users

identify problems that appear in the game’s story. The results showed that the tool enables

content creators to easily test their stories, setting our model as a good step towards automated

verification for assistance of authoring interactive narratives. Full details of the model and

evaluation can be found in the published paper9.

Figure 20: The Story Validator GUI.

9 Carolina Veloso and Rui Prada: “Validating the plot of Interactive Narrative games” in proceedings of

CoG 2021- International Conference on Games, pp. 1-8, Copenhagen, Denmark, August 2021. IEEE.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 23

SECTION 4 - UX BEHAVIOUR

The behaviour and choices of a user when using a complex system will heavily impact the UX of

that user. Similarly, the behaviour of a UX testing agent will also impact the UX predictions made.

As such, it is important to ensure the behaviour of UX testing agents is adequate and

representative of the users that might use a system. We have thus also conducted research on

how to achieve this, which will be presented in the following subsections.

In other Work Packages of the project, other behavioural modules were developed, focusing more

on functional testing than UX testing. These behavioural modules can, nonetheless, be used with

the previously described UX modules for the testing of UX much like the UX based behavioural

modules would be used. The accuracy of the UX predictions could suffer from using behaviour

that is not tailored for UX testing, but the information provided could still be valuable for developers

and testers. Having UX information when running functional tests could also be used in order to

save testing time in systems under test where running simulations with agents takes a significant

amount of time.

SECTION 4.1 - COVERAGE BASED BEHAVIOUR

As mentioned in 4.2, PX testing is aimed to assist game designers to test the expected emotional

experience during a game play as patterns of emotions that need to be verified over time and

space. If these patterns do not fulfil design intentions, game properties can be altered, and the

testing process can be repeated. To meet this aim, it is essential to have a set/suite of game

executions that cover different player behaviour to assure that the UX testing results are reliable.

Figure 21 shows the general architecture of PX testing, using as foundation the OCC predictive

model of emotion explained in Section 4.2. It has four main components: a Model-based Testing

component for generating tests, the Model of Emotions component implementing the

aforementioned computational model of OCC emotions, a basic test agent for controlling the in-

game player-character, and the PX Testing Tool as an interface for a game designer towards the

framework. The designer needs to provide the following inputs, which can also be seen in Figure

21 (1):

1. An extended finite state machine (EFSM) that abstractly models the functional behaviour

of the game under test.

2. A selection of which game events have impacts on the player’s emotions (e.g. defeating

an enemy, acquiring gold).

3. Characteristics that the designer wants to address in the agent to resemble a certain type

of players, such as: a player’s goals and their priorities, the player’s initial mood and beliefs

before playing the game, and the desirability of incoming events for the player. E.g. a

player might experience a high level of positive emotions on defeating an enemy, while

for another player who prefers to avoid conflicts, acquiring a gold bar could be more

desirable.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 24

Figure 21: Architecture of PX testing foundation using OCC-emotion model.

Given the EFSM model, the Model-based testing component, (2) in Figure 21, generates a test

suite consisting of abstract test cases to be executed on the game under test (GUT). To generate

a test suite with a model-based approach, the EvoMBT10 tool developed for the iv4XR framework

is used. Due to the abstraction of the EFSM model in EvoMBT, emotion traces cannot be obtained

from pure on-model executions. They require the executions of the test cases on the game under

test (GUT). An adapter is needed to convert the abstract test cases into actual instructions for the

GUT. The basic test agent does this conversion. Attaching the Model of Emotions to the basic

test agent creates an emotional test agent, (3) in Figure 21, which is able to simulate emotions

based on incoming events. Via a plugin, the emotional test agent is connected to the GUT. Each

test case of the test suite is then given to the agent for execution. The agent computes its

emotional state upon observing events and records it in a trace file. Finally, when the whole test

suite is executed, the PX Testing Tool component analyses the traces to verify given emotional

requirements and provide heat-maps and timeline graphs of emotions for the given level (4) in

Figure 21.

Evaluation of emotional heat-maps. A heat-map shows patterns over space. It can be

constructed for every test case, but we can also construct an aggregated heat-map of an entire

test suite by merging the traces of its test cases into a single trace, and then calculate the map

from the combined trace for every emotion as seen in Figure 22.

10 https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/mbt/MBT.md

https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/mbt/MBT.md

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 25

Figure 22: Aggregated Heat maps of emotions for all executed test cases

UX Testing and Goal Definition. The testing of UX raises a non trivial problem: how can a tester

define a test and the conditions over which it passes or fails? A desired (or undesired) experience

can be a complex and spatio-temporal phenomena which cannot be easily verified by the common

method of using “asserts” employed by traditional functional testing. A designer might have a very

specific arousal experience that she wants users to have and requires a method of expressing

that experience in a way that can be automatically verifiable.

As part of the work done in WP4, we have developed a Linear Temporal Logic (LTL) based

language which allows designers to specify their UX requirements over time and space. This

language was developed with a focus on the testing of user emotions, but could be expanded to

take in consideration other components of UX.

Designers can also go beyond the testing of specific emotional experiences such as fear, hope

and joy during a game play as patterns of emotions that need to be verified over time and space.

If these patterns do not fulfil design intentions, game properties can be altered, and the testing

process can be repeated. Although there are numerous combinations of emotions that can be

examined for a game level, only a proportion of them matter for the designer to check.

Formal emotion pattern Specifications for testing. The component is capable of verifying

emotional requirements given as formal patterns of emotions. We define emotion patterns to

capture the presence or absence of an emotional experience in a game. Such a pattern is

expressed by a string of symbols, each representing the stimulation (intensity rise), or lack of a

certain emotion type.

Definition. An emotion pattern is a sequence of stimulations e or ¬e, where e is one of the

symbols H, J, S, F, D and P. Each represents the stimulation of, respectively, hope, joy,

satisfaction, fear, distress, and disappointment.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 26

For example, the pattern JFS is satisfied by traces where the agent at some point becomes

satisfied (S) after a stimulation of joy (J), but in between it also experiences a stimulation of fear

at least once. Another example is J¬F S. when there is no stimulation of fear between joy and

satisfaction. The presence of this pattern indicates the presence of a ’sneak’ route, where a goal

can be achieved without the player having to fight enough for it. Although there are numerous

combinations of emotions that can be examined for a game level, there is only a proportion of

them that matters for the designer to check. As a requirement, recall that a pattern can be posed

as an existential requirement, i.e. Sat(p), or need to happen for all game-plays, i.e. Valid(p) or

need to unwitnessed for all game-plays, i.e., USat(p). It is also essential to clarify that the choice

of which emotion patterns are to be required can vary among game-levels, as expectations on

the occurrences of patterns depend on the design of the levels. E.g. a game level with Sat(DHS)

would provide at least one thrilling game-play. But if it is intended to be an easy level for beginners,

the designer might want to insist on UnSat(DHS) instead. We have collected a number of emotion

pattern requirements from the designer of the specific level, ranging from some simple ones, to

more complex ones. The main expectation of the designer is to ensure that the designed level is

enjoyable by experiencing different positive as well as negative emotions during the game-play

and to avoid the player getting bored. We interpret boredom as the absence of active emotions

in the agent's emotional state for some time. As can be seen in Table 1, while most requirements

are verified during the test, there are requirements like Sat(J¬S) that are failed. This requirement

indicates the designer expects at least one execution path where joy is stimulated at least once

thought the execution, but the agent never reaches the goal with satisfaction. Finding Sat patterns

that fail to be witnessed, or UnSat patterns that are witnessed, assists the designer to further

change their game level and run the agent through the level again for further testing. For example,

here, the fail on Sat(J¬S) is an indication the designer needs to put some challenging objects like

fire or enemies in the vicinity of the goal, when the agent has the goal in sight.

Table 1: emotion requirement verification using iv4xr model-based generated test suite. H= hope, F =

fear, J= joy, D= distress, S= satisfaction, P = disappointment and ¬X = absence of emotion X.

The full explanation of the extended pattern language to write formal emotion specifications based

on linear temporal logic is accessible online11.

11 https://github.com/iv4xr-project/ltl-pxevaluation

https://github.com/iv4xr-project/ltl-pxevaluation

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 27

SECTION 4.2 - PERSONA AGENTS - HUMAN-LIKE BEHAVIOUR

How does a player play? For most games and simulations, there is not a single answer. In the

exact same scenario, two different users can behave in completely distinct ways. This makes the

task of simulating user behaviour a complex one. In most games, it is unfeasible to simulate every

possible sequence of actions a player might do. Even when this is possible, many of those

sequences of actions might be highly unlikely to be chosen by a player, whereas others might be

extremely common. Knowing which sequences of actions better reflect the behaviour of real users

can help developers and testers make better decisions.

In this section, we describe a pipeline for generating persona agents, that is, agents whose

behaviour represents a subset of users. To do so, and having already collected user traces, we

will begin by clustering those user traces in order to identify persona clusters, meaning subsets

of users that behave similarly. We will then use an evolutionary algorithm to evolve genetic agents

that mimic the behaviour of the representatives of the identified persona clusters. Having done

so, we will thus obtain a set of persona agents.

We describe here the implementation of the pipeline in the game "Flower Hunter", previously

described in Section 4.1. Using 91 player traces, we are able to generate 8 persona agents that

successfully represented 89% of the players.

To have agents that imitate a subset of users, we must first define these subsets of users, which

will henceforth be called persona clusters. If a game or system already has a defined set of

persona clusters, then this step is already accomplished, and the sets can be used as they are.

However, this will not be true for most systems. To obtain persona clusters from data, we can run

a clustering algorithm on collected behavioural traces from real users. By doing so, we will obtain

clusters that contain traces that are similar between themselves. The degree of similarity between

traces on a cluster and the relevant information for the clustering will depend on the algorithm

used.

Once we have the persona clusters, we will need to design agents that behave in accordance to

each one of these clusters: the persona agents. We propose achieving this by using genetic

agents, being agents that have their behaviour defined by a set of parameters, along with an

evolutionary algorithm. By doing so, defining a persona agent becomes finding the set of

parameters that characterises the genetic agent that best represents a given persona cluster.

A diagram of the pipeline for defining persona agents can be found in Figure 23. To use this

pipeline on any given system, four things need to be implemented: a behavioural distance metric,

a clustering algorithm, a genetic agent, and an evolutionary algorithm. With these four

components, user traces can be turned into persona agents. The quality and coverage of these

persona agents will obviously depend on the implementation of the components as well as on the

quantity and quality of collected user traces.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 28

Figure 23: Diagram of the persona agent pipeline, identifying the 4 main components that need to be

implemented: a behavioural distance metric; a clustering algorithm; an evolutionary algorithm; and a genetic

agent.

We had 91 users play a level of the “Flower Hunter” game (Figure 11), the majority of which were

first year students of a Psychology bachelor. These users were explained the mechanics of the

game and given the liberty to play however they chose, with no time constraints. Key-pressed

and other in-game data were collected, like the position of the player in the map and the positions

of the game objects. These form collected traces that serve as the data-set for both training and

validating the pipeline here described.

Behavioural Distance Metric. To define a behavioural distance metric, we must decide what

constitutes similar behaviour, as the metric will attribute a value of similarity (or dissimilarity) to

any given pair of user traces. To define a behavioural distance metric that is the best for every

single system and situation is not a trivial task, if at all possible. It might be of interest to a game

designer to consider users that choose to go left instead of right as having different behaviours,

whereas another designer or even the same designer trying to evaluate a different thing, might

prefer to consider them as the same behaviour as long as both users are "exploring".

We decided to consider that players that take different routes and choose different actions when

playing a level of the "Flower Hunter" game are behaving differently. Behaviour can then be seen

as the sequence of low level actions chosen by a player. We chose to consider the lowest action

level, that is, the actions dictated by the keys being pressed at each of the game's time steps. A

player game trace can therefore be represented by a string such as "dddwsd", meaning the player

pressed the "d" key for the first three time steps, then the key "w" in the fourth, followed by the

keys "s" and "d" in the fifth and sixth time steps respectively.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 29

To match this decision, we implemented a distance metric based on the Levenshtein distance12

between the string representation of the sequence of low level actions. We therefore judged the

similarity between two game traces based on the minimum number of edits, deletions and

additions that are required to transform the string representation of one of the traces into that of

another. For example, a trace represented by the string "dddwsd" has a Levenshtein distance of

4 to the trace represented by the string "wwddsdd".

Clustering Algorithm. Having settled on a metric of behavioural distance, we had now a

foundation to choose the clustering algorithm we would be employing to find the persona clusters.

We did not have previous knowledge that allowed us to predict the number of persona clusters

we could expect to find. Therefore, we had preference for using a clustering algorithm that did not

require the number of clusters to be given as a parameter. We also required a clustering

algorithms that did not rely on Euclidean distances and could be used with the behavioural

distance metric we had previously defined. It would also be a bonus if the clustering algorithm

could determine which player trace was the most representative of each persona cluster.

With the aforementioned in mind, we decided to use the affinity propagation clustering algorithm13,

as implemented by the scikit-learn python library. This algorithm allows for any distance metric to

be used, defines the number of clusters automatically, and returns the player trace that is most

representative of each cluster.

Genetic Agent. A genetic agent is an agent whose behaviour is dictated by the values of a set of

parameters, which can be thought of as the genome of the agent. Different sets of parameters

will produce different behaviours. This encoding of the agent's behaviour into a set of parameters

allows the use of evolutionary algorithms14 as a way to find genetic agents that behave in a

particular way. In this section, we will present our implementation of a genetic agent for the

"Flower Hunter" game.

For the agent to represent player behaviour, we had to endow it with the ability to do that which

players do. Namely, the agent had to be able to move and explore the map, fight enemies, collect

items and reach the final objective. To achieve this, we began by endowing the agent with the

ability to navigate the map.

By creating a graph of the visited locations of the map, the agent was able to navigate by finding

the shortest path to a given known location and following it. Having this, the agent could also

reach any object it found, including enemies. Endowing the agent with the ability of fighting

enemies was only a question of having the agent move towards the closest enemy and begin

attacking when the enemy was within reach. Our agent was thus able to do everything required

12 Levenshtein, V.I., 1966, February. Binary codes capable of correcting deletions, insertions, and

reversals. In Soviet physics doklady (Vol. 10, No. 8, pp. 707-710).
13 Frey, B.J. and Dueck, D., 2007. Clustering by passing messages between data points. science,

315(5814), pp.972-976.
14 Bäck, T. and Schwefel, H.P., 1993. An overview of evolutionary algorithms for parameter optimization.

Evolutionary computation, 1(1), pp.1-23.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 30

to play the game. It had no way, however, of knowing when it should do any of these things nor

how it should explore the level. This will be solved by the genetic nature of the agent. Each genetic

agent will have a set of parameters, the value of which will dictate the actions of the agent. The

chosen parameters are the following:

Each of these parameters can have a value between 0 and 100. The first four parameters encode

the preference the genetic agent will give to reaching the objective, fighting enemies, gathering

currency and gathering health items, respectively. The fifth parameter encodes the method of

exploration that the agent will pursue. Different combinations of parameters will therefore lead to

different behaviours from the agent even when facing the same situation.

In the next section, we will describe the evolutionary algorithm used to find the sets of parameters

that will be used for the persona agents.

Evolutionary Algorithm. Having a clustering algorithm that finds the persona clusters present

on a set of player traces and a genetic agent that behaves differently according to its genome, we

now need a method of finding the set of parameters that dictate a behaviour that most resembles

the traces found on each persona cluster. To do so, we will use an evolutionary algorithm.

For each persona cluster, we initialise a population of 300 genetic agents with random sets of

parameters. At each generation, all of the agents play the same level of the “Flower Hunter” game.

Their actions are recorded and compared to the action traces of the representative player trace

of the persona cluster. This comparison is done using the behavioural distance metric previously

described. This distance is then negated and used to assign a fitness to each of the agents: the

greater the distance between the agent trace and the cluster representative trace, the lower the

fitness of the agent. All fitness values will therefore be negative, with the highest possible fitness

being 0, when the traces compared are exactly the same.

Once every agent has been assigned a fitness, the 30% with the highest fitness are chosen to

reproduce and be a part of the next generation. The reproduction is done by randomly selecting

two parent agents and randomly mixing their parameters to create a new child agent. With a 20%

probability, each of the parameters can suffer a mutation and take a random value. The top 30%

of the population thus reproduces between itself until the population has once again 300 agents.

This process is repeated for 60 generations. The agent with the set of parameters that allow it to

have the best fitness in the last population is then chosen as the persona agent.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 31

Table 2: Persona clusters found by the clustering algorithm, along with their number of members, fitness of

the corresponding persona agent, and whether the persona agent was accepted as representing the

behaviour of the cluster.

Figure 24: Representation of the game paths taken by the persona cluster representative (left, in green)

and the corresponding persona agent (right, in blue).

Results. The first step of the persona agent pipeline was clustering the 91 player traces we had

collected into clusters that represent different playing styles, obtaining 16 clusters. As can be seen

on Table 2, some of these clusters have only one member, representing outliers that behaved in

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 32

such a particular way that they could not be added to any of the other clusters. One of these

players went around in circles multiple times whereas another went back and forth in the same

corridor. We decided such traces should not be discarded from the data-set as they still

represented player behaviour, however strange it might be. Other clusters have many members,

like cluster number 10, which has 29 members and represents all players that went on a straight

line to the rightmost corner of the game then straight down to the final objective (Figure 24).

Having defined the persona clusters, we then evolved the parameters of 16 persona agents so

that each one of them represented the behaviour of one of the persona clusters. We thus obtained

16 persona agents, the fitness of which can be found on Table 1. Only agents with a fitness above

-400 were considered acceptable as representatives of their persona cluster. This value was

chosen through observation. Traces with a fitness above -400 could not be spotted as outliers

when compared to the player traces of the cluster. The traces of the accepted persona agents

can be seen next to the traces of the corresponding persona cluster representative on Figure 24.

In the end, only half of the persona clusters were properly represented by a persona agent.

However, the 8 persona agents that were accepted represented 89% of the player traces

collected, as every cluster with more than 2 members was successfully represented. This was an

unexpected result as the number of members in a cluster has no influence on the evolution of the

agent, given the fitness is always calculated based only on the representative of the cluster.

SECTION 5 - EXAMPLE WORKFLOWS

In the previous sections, we have explained the architecture of our SETAs and the several

modules that were researched and developed, both for the prediction of components of UX as

well as for the generation of UX testing agent behaviour. In this section, we aim to clarify how the

SETAs can be used by designers and test engineers during the development of a XR system.

SECTION 5.1 - USING FORMAL EXPERIENCE SPECIFICATIONS FOR TESTING

One application of our SETAs is the automatic evaluation of UX for a given set of already created

levels or scenarios. To do this, the designer needs to connect the System Under Test (SUT) to

the iv4XR framework. Once this is done, the designer can define a set of Desired Experience

Outcomes (DEO) describing the experiences that are expected (or undesired) for players overall

or for a specific subset of players. They can then run SETAs on the set of levels/scenarios that

will be evaluated. These SETAs will be equipped with the relevant modules for the UX component

being evaluated. By running the SETAs on the levels/scenarios, the resulting UX predictions can

be automatically compared to the defined DEO and the designer can be informed about the results

of the test. The information given to the designer can be a simple “pass” or “fail” for each

level/scenario or be complemented by more information, like the heat maps shown in Section 4.1.

An overview of this example workflow is shown in Figure 25.

To give a concrete example, let us imagine a designer testing an exploration game in VR. This

designer has connected the VR game to the iv4XR network and now wishes to evaluate the UX

of a number of levels that have been designed. Given the exploratory nature of the game, the

designer decides that the most important component of UX that she wants to test is the emotional

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 33

state of the player, with a special focus on the arousal level. She wants to ensure players will not

become bored (low arousal) when traversing the level. The designer had already collected arousal

traces in previous levels of the game using an approach similar to the one described in Section

3.1.2. This allows her to use the machine learning based emotion prediction module described in

Section 3.1.2 to automatically estimate the level of arousal. She is also interested in knowing if

players can feel Cybersickness when playing the game, so she also adds the module described

in Section 3.3, thus having two different UX metrics modules implemented in her SETA. As she

is mostly interested in knowing what users would do and already has collected traces, she decides

to use the behavioural module described in Section 4.2 to find the different types of players she

has and simulate their behaviour in the new levels she is testing. By defining the UX metrics and

the behavioural module for the SETA, the designer has thus created the UX testing agent that

best fits her system under test and testing goals.

As a formal experience specification, our designer can decide to only accept levels that have at

least two peaks of arousal. This can be described as Sat(AA) according to the specification

language described in Section 4.1. Having both a SETA and a formal experience specification,

the designer can finally run the SETA through all the levels and have automatically tested whether

the level and SETA pair passes the constraints defined in the formal experience specification or

not.

Figure 25: Workflow for the ranking and selection of a set of levels/scenarios based on UX criteria.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 34

SECTION 5.2 - USING UX TEST AGENTS FOR EXPERIENCE BASED PROCEDURAL CONTENT

GENERATION

Another application of our SETAs can be the automatic generation of scenarios (e.g. game levels)

that induce a specific desired UX. To do this, the designer needs once again to have the SUT

connected to the iv4XR framework. A parameterized Procedural Content Generator (PCG) that

is able to create new levels/scenarios based on a given set of parameters is also needed, and

this is not directly offered by the framework as it is very SUT dependent. The iv4XR toolkit does

offer, however, 2D level generators that can be modified to be used by other SUTs. The designer

then needs to define the set of Desired Experience Outcomes (DEO) that describe the

experiences that will guide the generation of the new levels/scenarios. A population of

levels/scenarios created by the parameterized PCG engine can then be created and evolutionary

algorithms used to evolve this population to best match the DEOs. The fitness of the

levels/scenarios will be given by running SETAs equipped with the relevant modules for the UX

component being evaluated on each level/scenario. The closer the predicted experience is to the

DEOs, the better the fitness of the level/scenario and the higher the chance that this level/scenario

and its offspring will remain in the population. When the evolutionary algorithm reaches its final

generation, the designer will be presented with the set of levels found that best match the DEOs

that had been defined. An overview of this example workflow is shown in Figure 26.

Figure 27: Workflow for the automatic generation of new levels/scenarios based on a desired UX.

D4.4 – Report describing SETAs

WP4-D4.4 iv4XR 35

SECTION 6 - CONCLUSIONS

The goal of WP4 was to create Socio Emotional Test Agents (SETAs) capable of testing the UX

of systems connected to the iv4XR framework. Such agents required both the ability to measure

components of UX as well as the capability of behaving in ways that were aligned with the testing

of UX.

In order to create such SETAs, we developed UX metrics modules capable of emotion prediction,

cognitive load prediction, motion sickness prediction, difficulty estimation and validating the plot

of interactive narrative games. We also developed behavioural modules that allow the SETAs to

either mimic the behaviour of particular types of users or to behave in ways that try to maximise

emotional coverage. We further worked on creating a specification language capable of defining

UX goals so that they could be automatically tested.

Overall, we created solutions that allow designers and testers that connect their applications to

the iv4XR framework to create tailored made SETAs to automatically test different components

of UX.

