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EXECUTIVE SUMMARY 

This deliverable presents a summary of the Socio-Emotional Testing Agents (SETAs) that were 
developed as part of WP4. It begins by explaining the modular architecture of the SETAs and 
then presents the several components that were developed during the iv4XR project. These 
components pertain both to the behaviour of the SETAs as well as the automatic measurement 
of different components of user experience. At the end of the deliverable, we provide example 
usages of the SETAs and of how the different components can be used by designers to create 
tailored made user experience testing agents for their applications. 
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SECTION 1 - INTRODUCTION 

 

In a world where agile software development is becoming the norm, which entails quick 

development sprints and a reliance on automatic testing, there is concern for the testing of User 

eXperience (UX) during development. This is especially relevant for complex systems like 

Augmented Reality (AR) and Virtual Reality (VR) applications. Currently, testing UX on such 

systems requires testing with humans, which is both money and time consuming. It becomes 

infeasible to test the implications to UX each time developers change something in the application 

as it would slow down the development process too much. However, having access to quick and 

on demand estimates of UX would allow developers to create better and more user friendly 

applications. It would also greatly benefit developers and environment designers to know what 

actions and paths users are most likely to take. 

The creation of Socio-Emotional Testing Agents (SETAs) is our approach to begin solving these 

problems and allow UX concerns to be tested automatically during development, aiding the 

creation of better applications. SETAs are agents capable of interacting with an environment and 

providing estimates of different components of UX. Such capabilities allow them to be used by 

developers and testers to quickly and automatically have a better understanding of whether their 

UX design goals are being met or not. These agents could, for example, allow developers to 

automatically know which areas of an environment are not providing enough stimulus to users or 

which ones are too overwhelming. They could also give developers an idea of how different the 

experience would be to different users. 

 

 
Figure 1:  The different components of UX (the user interaction with the system in a given environment), 

and the variables contributing to User eXperience. 
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To have a comprehensive view of UX, we gathered previous definitions in literature and defined 

UX as emerging from a user's interaction with a product/service/software. UX is a consequence 

of prior experiences, attitudes, skills, habits, and personality. It is a subjective, situated, complex, 

and dynamic encounter. 

To evaluate UX, we need to consider the user, the product/service/software, the context or 

environment, and the variables that emerge during the interaction itself. Figure 1 provides an 

overview of a UX framework we constructed, focused on automated evaluation of UX. To move 

from the current practices towards automated tests it is important to have clear definitions and a 

modular structure to help define test agents.  

The interactions are situated i.e., they take place in a given context. For the environment we 

consider three layers: the temporal layer, the social layer and the physical layer. The temporal 

layer considers long-term interactions. Most products/services/software are not single use and so 

a good UX evaluation should consider multiple interactions over time. The social layer relates to 

individual UX experiences that are constructed in social interaction. Finally the physical context 

relates to physical aspects of the environment that can affect the interaction experience.  

In the environment we see the user interacting with the system. We have user variables and 

system variables that come together when the user is using the system, for example executing a 

task, as this will produce the interaction variables. At the beginning of an interaction the user has 

a set of fixed variables (in blue) and variables that should change with the interaction. The 

interaction is divided into instrumental and non-instrumental variables. All variables are expected 

to change in each interaction. The last box represents the system variables which we consider to 

be fixed at the beginning of the interaction. These are variables of the system that will impact the 

interaction and consequently, the UX. The SETAs work developed within the lifetime of the project 

aims at covering some of the aspects illustrated in Figure 1.  

SECTION 2 - THE MODULAR SETA 

 

User experience (UX) is a broad, complex and multi-faceted concept. It encompasses many 

different components of human experience along with characteristics of the system itself and the 

surrounding environment (Figure 1). It is therefore unfeasible to have a single, unidimensional 

measure of UX. What can be done is the measurement or prediction of different components of 

UX according to what is most relevant to testers and designers. With this in mind, we have 

implemented our SETAs to be modular by design. This means that they can be run with different 

modules, each endowing them with the ability to predict different components of UX. They can 

also be easily expanded with new modules to allow them to predict novel components of UX as 

new predictors are created. 

For example, to the designer of an aeroplane piloting simulation, the most relevant components 

of UX to be predicted might be cognitive load and the level of arousal. It might be of little relevance 

the level of happiness or enjoyment of the user, whereas those might be the most relevant 

component for the designer of a video game. It is thus important to allow the SETAs to be flexible 

to the system under test and the goals of the designers. 

The same modular concept applies to the behaviour of the SETAs. Different systems under test 

will require agents that behave differently to test their UX. Even the same system might require 
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agents that behave in different ways for different scenarios and UX components being tested. For 

some systems, it might be feasible and logical to test UX with an agent that tries to cover all 

possible actions and behaviours. For other systems, like a real-life simulation or a complex video 

game, that might be unfeasible given the action space, as well as irrelevant for UX testing. In 

most cases, agents that behave randomly would provide unreliable and possibly useless 

information regarding the UX of a system. A further discussion about the relevant characteristics 

for the behaviour of UX testing agents will be presented in Section 4. 

 

 
Figure 2:  The modular architecture of the SETAs. 

 

We therefore designed our SETAs with a bipartite nature, having a behavioural component, 

responsible for deciding the actions taken by the agent, and a UX metrics component, responsible 

for making predictions related to the several components of UX. Both these components are 

interdependent and needed for a UX testing agent. The behaviour of the agent will affect the 

measurements done by the UX metrics components, as different traversals of a level or situation 

will likely lead to different UX. 

With this modular SETA architecture (Figure 2), we allow designers and testers to choose which 

existing modules are most relevant for their needs and even develop new modules which can be 

easily integrated with the existing architecture and work alongside other modules. 
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Figure 3:  The interaction between the designers, the SETAs and the system under test. 

 

In Figure 3, we find a diagram of the relationship between the designers, the SETAs and the 

system under test. The designers need to define which UX Metrics modules and Behavioural 

modules will be used as well as specify the parameters for those modules. By doing so, they 

define the SETA that best matches their testing needs. Once defined, the SETA will interact with 

the System Under Test (SUT). The evolution of the state of the system and the internal state of 

the agent (UX Metrics) will then be used to provide the designer with information about the SUT. 

If Design Goals have been defined, representing the UX objectives the designer had in mind when 

designing a scenario, then the designer will also be informed about which scenarios satisfy the 

Design Goals for the used SETAs and which do not. 

In the next section, we will describe the UX metrics modules developed throughout the life-span 

of the project. We will then describe the behavioural modules in Section 4. We will then give 

examples of how the combination of behaviour and UX metrics can be used to help designers 

meet their testing needs in Section 5. 
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SECTION 3 - UX METRICS 

As was discussed in Section 2, UX is a complex concept which has many underlying components. 

Our approach to testing UX is therefore not to try and measure UX as a whole but to look at these 

different components and try to test them individually. As such, in the following subsections, we 

will present the solutions we have developed for the testing of a number of UX components. These 

modules of UX testing can be used simultaneously or in any combination, depending on the goals 

of the designer and the system under test. 

We will here describe modules for: emotion prediction; cognitive load prediction; motion sickness 

prediction; difficulty estimation; and validating the plot of interactive narrative games. 

 

SECTION 3.1 - EMOTION PREDICTION 

We have developed two modules for emotion prediction, one being model based and the other 

based on machine learning. The approaches require different types of setup from the designers 

and testers and are best suited for different systems under test and testing scenarios. The model 

based approach doesn’t require training data but requires expert knowledge. The machine 

learning approach doesn’t require expert knowledge but requires training data. Both approaches 

will be described in further detail in the following subsections. 

SECTION 3.1.1 - OCC PREDICTION - MODEL BASED 

User eXperience and emotions are tied to human cognition. Cognitive scientists and 

psychologists have been investigating emotions and its relation with experience for decades, 

leading to the creation of theoretical models of emotion that provides a more coherent outlook of 

cognitive processes. According to appraisal theories of emotions, common patterns can be found 

in the emergence of the same emotion. These patterns are given as a structure of emotions by 

the Ortony-Clore-Collins (OCC)1 theory of emotions. Thus, a model-driven approach derived from 

a well-grounded theory of emotions, such as OCC, is sensible when access to sufficient data is 

not possible. Each of the emotion types listed in Figure 4 is specified as described in the OCC. 

 

 

 

 

 
1 Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. cam (bridge university press. Cambridge, England (1988) 
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Figure 4: Structure of emotions according to the OCC model 

 

Our desire to develop a model-driven approach led us to introduce a transition system to model 

event-driven emotions based on the OOC cognitive theory of emotions. It is essentially a 

computational model that can simulate players emotions during a game-play by replacing a 

human player with an automated agent with an emotion model. The original OCC theory gives a 

cognitive structure for 22 emotion types, viewed as cognitive processes where each emotion type 

is elicited under certain conditions (Figure 4).  

We introduced a formal model for event-driven OCC emotions using an event-based transition 

system to serve as the foundation of our automated UX testing approach. These emotions are: 

hope, joy, satisfaction, fear, distress, and disappointment (six from the aforementioned OCC’s full 

set of 22) for a single agent simulation where the agent's emotional state changes only by system 

under test dynamism expressed through events to the agent. A given system under test is treated 

as an environment that discretely produces events triggered by the agent's actions or 

environmental dynamism such as hazards. The event tick represents the passage of time. The 

emotion model of an agent is defined as a 7-tuple transition system M:  

 

(𝛴, 𝑠0, 𝐺, 𝐸, 𝛿, 𝐷𝑒𝑠, 𝑇ℎ𝑟𝑒𝑠) 

 

● 𝐺 is a set of goals that the agent wants to achieve; each is a pair ＜𝑖𝑑, 𝑥＞ of a unique 

goal name (𝑖𝑑) and significance degree (𝑥). 

● 𝛴 is the set of M's possible states; each is a pair ＜𝐾, 𝐸𝑚𝑜＞:  

○ K is a set of propositions the agent believes to be true. It includes, for each goal g, 

a proposition status(g,p) indicating its confirmation or disconfirmation status with p 
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∈ {achieved, failed, proceeding}, if g has been achieved or failed, and a proposition 

𝑃(𝑔, 𝑣), with v ∈ [0..1], stating the agent's current belief on the likelihood of 

reaching this goal. 

○ Emo is the agent's emotional state represented by a set of active emotions, each 

is a tuple <ety, w , g,  t0>, ety is the emotion type, w is the intensity of the emotion 

respecting a goal g, and triggered time t0. 

● s0 ∈ Σ is the agent’s initial state. 

● E specifies the types of events the agent can experience 

● δ is M ’s state transition function; to be elaborated later. 

● Des is an appraisal function; Des(K, e, g) expresses the desirability, as a numeric value, 

of an event e with respect to achieving a goal g, judged when the agent believes K. OCC 

theory has more appraisal factors, but only desirability matters for aforementioned types 

of emotion. 

● Thres: thresholds for activating every emotion type. 

 

One or multiple emotions can be activated by an incoming event (except tick). This is formulated 

as follows:  

𝑛𝑒𝑤𝐸𝑚𝑜(𝐾, 𝑒, 𝐺)  =  {⟨𝑒𝑡𝑦, 𝑔, 𝑤, 𝑡⟩ | 𝑒𝑡𝑦 ∈  𝐸𝑡𝑦𝑝𝑒, 𝑔 ∈  𝐺, 𝑤 =  𝜀𝑒𝑡𝑦 (𝐾, 𝑒, 𝑔)  >  0 

where w is the intensity of the emotion ety towards the goal g ∈ G and t is the current system 

time. Upon an incoming event, the above function is called to check the occurrence of new 

emotions as well as re-stimulation of existing emotions in Emo for every g ∈ G. 𝜀𝑒𝑡𝑦  (𝐾, 𝑒, 𝑔)  

internally calculates an activation potential value and compares it to a threshold 𝑇ℎ𝑟𝑒𝑠𝑒𝑡𝑦; a new 

emotion is only triggered if the activation potential value exceeds the threshold. These thresholds 

might vary according to players’ characters and their moods. For instance, when a person is in a 

good mood, their threshold for activating negative emotions goes up, which conveys how they 

become more tolerant to feeling negative-valenced emotions. As examples, the activation 

functions for hope and fear emotions, based on provided definitions in the OCC theory, are as 

follows: 

 

● Hope is defined as being pleased about the prospect of a desirable consequence of event 

in OCC theory which is formalised in the defined transition system M as follows: 

 𝜀ℎ𝑜𝑝𝑒  (𝐾, 𝑒, 𝑔)  =  𝑣′ ∗  𝑥 −  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑒  

, provided 𝑔 =＜𝑖𝑑, 𝑥＞ ∈  𝐺, 𝑃(𝑔, 𝑣)  ∈  𝐾, 𝑃(𝑔, 𝑣′)  ∈  𝑒(𝐾), 𝑎𝑛𝑑 𝑣 < 𝑣′ < 1.  

 

● Fear is defined as being displeased about the prospect of an undesirable consequence of 

event in OCC theory which can be formalised in the transition system M as follows:  

𝜀𝑓𝑒𝑎𝑟 (𝐾, 𝑒, 𝑔)  = (1 − 𝑣′) ∗  𝑥 −  𝑇ℎ𝑟𝑒𝑠𝑓𝑒𝑎𝑟   

, provided 𝑔 =＜𝑖𝑑, 𝑥＞ ∈  𝐺, 𝑃(𝑔, 𝑣)  ∈  𝐾, 𝑃(𝑔, 𝑣′)  ∈  𝑒(𝐾), 𝑎𝑛𝑑 0 < 𝑣′ < 𝑣. 

For further explanation of the model and formalisations of emotions, please see2.   

 
2 Ansari SG, Prasetya IS, Dastani M, Dignum F, Keller G. An Appraisal Transition System for Event-Driven Emotions in Agent-Based Player 

Experience Testing. In International Workshop on Engineering Multi-Agent Systems 2021 May 3 (pp. 156-174). Springer, Cham. 
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The OCC model exists as a UX metrics module of SETAs to address affects and emotions. There 

are also characteristics that the designer needs to specify in the agent to resemble a certain 

character of players in the OCC model, such as: a player's goals and the goals priorities, the 

player's initial mood and beliefs before playing the game, the desirability/undesirability of incoming 

events for the player and how they affect goals' likelihoods. E.g., a player might experience a high 

level of positive emotions on defeating an enemy in a game, while for another player who prefers 

to avoid conflicts acquiring a gold bar could be more desirable. These characteristics are 

addressed as input parameters of SETAs in Figure 3. PX is the terminology applied to UX in 

games. Specifically, the model is used for Lab Recruits which is a 3D Unity game which has 

different replayable levels and is connected to the iv4XR framework. 

Figure 6a shows a floor plan of a Lab Recruits level exposed to PX testing using our approach. 

The goal is for the player to escape the level by reaching the exit room circled in red. Access to 

this room is guarded by a closed ’final door’. Figure 5b and 5c show two provided setups with the 

different amounts and locations of fire hazards. The agent will lose health points by passing each 

fire hazard. These setups are examples of choices considered by designers, although being 

currently simple, as to which one would lead to better PX. As mentioned earlier in this section, a 

developer sets needed inputs of the model such as the goal set, initial likelihood of each goal, the 

desirability of events for each goal, the threshold and decay rate of emotions in SETAs input 

parameters. A test agent is deployed, through the iv4XR framework, set with multiple goals, 

though here we will only discuss the most significant one, namely completing the level. Initially, 

the agent is assumed to believe that the likelihood of achieving this goal is 0.5. As the agent 

progresses, its belief on the likelihood of completing the level changes, depending on the number 

of opened doors as well as remaining closed doors. Opening each door is assumed to have a 

desirable consequence for the agent because it increases the chance of the agent to complete 

the level. 

 
Figure 5: A simple level under test in Lab Recruits with two different setups 

 

With assigning the level under test to SETAs, an intelligent test agent is run through the level 

using tactics provided in iv4xr framework for the agent to do decision making and behave. Then, 

the OCC model in UX metrics component decides about its internal emotional states of the agent 

based on perceived consequences of actions the agent took as well as environment dynamisms. 

The agent’s emotional state keeps getting updated until the agent successfully reaches the exist 
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room or dies. Then a report of experienced emotions in terms of timeline graphs and heatmaps 

will be produced for the designer. 

The timeline of emotions in setup 1 and setup 2 in Figure 6 shows that the trend of positive 

emotions is actually quite similar, although with a smaller level of hope in the setup 2. However, 

comparing the result of setup 2 with setup 1 reveals something interesting. Fear shows a quite 

different trend in setup 2 (Figure 6b). It is stimulated multiple times during the execution, whereas 

the same emotion, despite having numbers of fire hazards, has been never stimulated in setup 1 

(Figure 6a). In other words, having some fire hazards may not necessarily trigger fears in the 

agent unless the agent passes a certain number of fire hazards. Such a comparison can be useful 

for designers e.g., to determine the amount and placement of hazards to induce a certain degree 

of fear along with keeping the chance for satisfactory experience of accomplishing the goal. In 

our case, setup 1 is less likely to thrill the player, whereas setup 2 has a better balance of the 

quantity and placement of the fire, by generating fear and even in a relatively close time interval 

with a rise in hope, while still keeping the level survivable. Moreover, this information can be 

shown in terms of heat maps, providing spatial information of the agent’s emotions in a set up. 

Figure 7 shows heatmaps of positive and negative emotions for setup 2. 

 

Figure 6: Timeline of emotions in Setup 1 and Setup 2. 

 

Figure 7: The heat maps of triggered emotions in setup 2. 

Black= very low intensity (or no emotion), white= walls, grey=unexplored area. 
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The proposed emotional modelling can be used for any designed Lab Recruits level. Figures 8 

and 9 show the result of an experiment over a medium size level in Lab Recruits.  

 

Figure 8: Timeline of emotions in a medium size level called Lab1 in Labrecruits  

 

Figure 9: Heat maps of emotions in Lab1 

SECTION 3.1.2 - EMOTIONAL PREDICTION USING THE PAD MODEL AND MACHINE LEARNING 

 

Another of the implemented modules of our SETAs that focuses on emotional prediction is based 

on the PAD model of emotion3. This model describes human emotions based on three 

dimensions: Pleasure; Arousal; and Dominance. For this module, we used machine learning to 

train a predictive model for the dimensions of the PAD model based on data collected from the 

system under test. A representation of the machine learning process can be found on Figure 10. 

 

 
3 Russell, J.A. and Mehrabian, A., 1977. Evidence for a three-factor theory of emotions. Journal of 

research in Personality, 11(3), pp.273-294. 
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Figure 10:  A graphical representation of the machine learning approach. The main idea is to use as training 

inputs the internal state of the system under test along with the state of the agent. Using these inputs, we 

can then train a predictive model to predict the emotional dimensions based on continuous self reporting of 

users. The use of user self reporting might appear to go against the objective of automation, but the user 

traces would only need to be collected once to train the model. Once the model is trained, it can then be 

used whenever necessary without the need of further user data. 

 

For the sake of training the model, a game named “Flower Hunter” was developed, inspired by 

old-school top-down 2D games like Legend of Zelda. It was designed to be easily modifiable, fast-

running, compatible with Python machine learning libraries, and ultimately entertaining enough to 

motivate users to play it. Screenshots of the game can be found on Figure 11. 

 

 

 



 

D4.4 – Report describing SETAs 

WP4-D4.4      iv4XR                             13 

 

  
 

 
Figure 11: Screenshots of the "Flower Hunter'' game. The player, represented by a black and yellow ball, 

needs to traverse a field riddled with enemies, health providing rice cakes, and coins, in order to find a pink 

flower (shown on the bottom right screenshot). Once the player finds this flower, the game is over and the 

player won. If the player loses all its health points by touching enemies, then the game ends and the player 

lost. The player can use a sword to fight and kill the enemies (shown in the bottom left screenshot). 

 

The inputs used to train the predictive model were all numerical in nature and encoded the time 

passed since several relevant events in the game, the number of each type of agent seen by the 

player and the distance to those objects. These inputs were chosen to be as abstract as possible 

and thus applicable to many different genres of games and simulations. 

To train a machine learning model, we required information about the three emotional dimensions 

of a player as he traversed the game, as we believed it would be more meaningful to the testers 

and designers to know how the emotional dimensions evolved over time and space opposed to 

only having a final estimate of the value for each dimension for the totality of the interaction 

between the user and the system. Furthermore, the closest to continuous this information could 

be, the better, as it would allow us to create a finely grained model. As such, we decided to use 

continuous, after the fact, annotation, inspired by previous works that used a similar approach4,5. 

 
4 Lopes, P., Yannakakis, G.N. and Liapis, A., 2017, October. Ranktrace: Relative and unbounded affect 

annotation. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction 
(ACII) (pp. 158-163). IEEE. 
 
5 Melhart, D., Liapis, A. and Yannakakis, G.N., 2021. The Affect Game AnnotatIoN (AGAIN) dataset. 

arXiv preprint arXiv:2104.02643. 
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This annotation worked as follows. The user, after playing a given level of the "Flower Hunter" 

game, was asked to annotate one of the PAD emotional dimensions. He did so by seeing a 

recording of the level he had just played while using the up and down arrows on a computer 

keyboard to control a line on the screen, which represented the evolution of the emotional 

dimension throughout the traversal of the level. Two screenshots taken during the annotation 

process can be found on Figure 12. 

 

 

 
Figure 12: Screenshots of the continuous annotation process used. The black line that is seen on the screen 

was controlled by the user, going up or down according to the perception the user had of the dimension 

being annotated having increased or decreased, respectively. 

 

We chose to have each user annotate only one of the PAD dimensions. We did this both to spare 

the user 3 consecutive annotations after playing a single level, but also to ensure the user kept in 

mind the dimension that he was annotating without getting confused and inadvertently mixing the 

dimensions. By annotating a single dimension, the user only had to remember a single definition 

for the dimension being annotated, thus, in principle, ensuring more reliable annotations. This 

came, however, at the cost of having only one of the dimensions annotated for each user trace 

we had. 

We had 91 participants play three "Flower Hunter" levels and self report their levels of a given 

PAD dimension. Each participant was randomly assigned a dimension at the beginning of the 

experiment and given a definition of said emotional dimension. The participants could only 

proceed with the experiment once they confirmed that they understood the definition for their 

assigned emotional dimension. These participants were students of Psychology, which might 

enable them to more easily understand the definitions of the PAD dimension. The levels used for 

the experiment can be found on Figure 13. These maps had the same topology but different 

distribution and quantity of objects and enemies. In the end, we had 264 annotated traces.  

 



 

D4.4 – Report describing SETAs 

WP4-D4.4      iv4XR                             15 

 

  
 

 
Figure 13: The three maps used for the collection of data. As can be seen, all the maps had the same 

topology yet the location and number of objects differed between them. 

 

The several input values and the output value were collected with a frequency of 8 Hz. To tackle 

the sequential nature of the data, we decided to translate the input and output into overlapping 

slices of variable length (for example, one second), and using the variation of the values within 

that slice of time to train the model instead of the absolute values themselves. An exception were 

the input values related to the time elapsed since an event, which were also fed to the model in 

their absolute form as to allow the model to be aware of long periods of time where a given even 

didn't occur, for example, being aware that the player hasn't seen an enemy in over a minute. 

The output slices were further classified as "increasing" or "decreasing/stable", transforming a 

prediction problem into a classification one. The absolute values for the emotional dimensions 

varied greatly between different users and didn't provide much information by themselves. To 

know if an emotional dimension was increasing or not was, however, a valuable information. 

We then discarded 3 traces where there was no change to the emotional dimension throughout 

the entire play-through. Lastly, there were considerably more instances of the "decreasing/stable" 

class than of the "increasing" class. As such, the training data required balancing. From several 

methods tried, balancing using random over sampling proved to give the best results. 

 

 



 

D4.4 – Report describing SETAs 

WP4-D4.4      iv4XR                             16 

 

  
 

 
Figure 14: Three examples of traces and self reporting for the Arousal dimension. These traces are for Map 

2 and show how different users can have very different experiences depending on the traversal of the map 

and their own different perceptions for the reported dimension. 

 

After gathering and processing the data as described in the previous section, we were now faced 

with a traditional binary classification problem. We experimented with several different machine 

learning algorithms, such as neural networks, decision trees and state vector machines. In the 

end, the random forests algorithm was the one that provided the best results. 

A different predictive model had to be trained for each one of the PAD emotional dimensions. As 

such, we achieved a different accuracy for each dimension. The accuracy was based on the 

correct classification of 1 second slices using the "leave one out" method. For the Pleasure 

dimension, we were able to achieve an accuracy of 72.8%. For the Arousal dimension, we were 

able to obtain a slightly better 73.1% of accuracy. However, our approach fared considerably 

worse on predicting the Dominance dimension, which we were only able to predict with ≈60% 

accuracy. 

 

SECTION 3.2 - COGNITIVE LOAD PREDICTION 

 

A significant part of XR user experience results from the interaction of each user with the system 

while solving a task in the environment. During interaction with an XR system, each user has 

different exchanges while navigating through the design space of the system, which will create 

distinct user experiences (UX). Aside from the emotions and social motivations, cognitive abilities 

also impact appraisal, and, indirectly, how the user navigates the space. Being able to understand 

how the interactions reflect these dimensions of the experience would help designing more 

personalised systems, resulting in better UX. 

We addressed the prediction of Cognitive Load, meaning the amount of information a person is 

conscientiously processing at a given moment. The cognitive load has a close relationship with 

attention mechanisms. We aim to create a toolset in the context of automatic play-testing that we 

can extend to other types of systems. To create this toolset, we explored two different approaches. 

For the first one we focused on the TBRS (Time-Based Resource Sharing) memory model. For 

our second approach we created a plugin that follows a secondary task paradigm. The toolset, 
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based on the TBRS memory model6, aims at providing a measure of the cognitive load (a 

percentage) that the user is expected to experience while going through a particular task in a 

specific context. Autonomous agents navigating and exploring a virtual environment need some 

parameterisation of what grabs the agents’ attention (e.g., interacting with an object or dodging 

enemies’ attacks). We call these “attention-grabbing events”, measured in seconds (duration of 

the event). The toolset will provide a set of methods (API) that need to be added/called from the 

code of the software undergoing testing, each time an attention-grabbing event occurs.  

After finalising a task, the toolset computes an estimate for the cognitive load experienced by the 

user, based on the sum of the attention-grabbing events, i.e., the total amount of time in which a 

participant was fully paying attention to a task, and the total duration of the task.  

 

 
 

We can integrate this value into automated testing procedures by using assertions in the code 

that check whether the estimated value of the cognitive load is within a specific desired range. If 

not, the toolset will be able to present a short report to identify possible problems with the current 

implementation (based on the data gathered) and shed some light on the direction to take in future 

development.  

To evaluate our model, we created the game “Way-out” (Figure 15), in which the player is 

escaping from a small underground complex. We designed the game to allow for the 

parameterisation and control of several attention-grabbing events, and the manipulation of several 

dimensions of the experience, such as the time required to navigate through the game, the 

complexity of the task based on the number of interactions required to overcome them, as well 

as the number of items a player needs to keep in mind to solve the different puzzles. By comparing 

the reported cognitive load of the participants to the value computed by the TBRS theoretical 

model, we aim at evaluating whether this model is an appropriate predictor of the cognitive load 

reported by the players for the whole experience.  

We conducted a user study which showed that the attention grabbing events are correlated with 

higher reported cognitive load. However, our time manipulation was not successful as the game 

is self-paced.  

We also worked on a plugin that allows for a more fine-grained measure of cognitive load. The 

plugin introduces a secondary task in the game. Secondary task paradigm, common in memory 

studies, introduces a secondary task that competes for the same resources as the main task. 

 

 
6 Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. The 

cognitive neuroscience of working memory, 455, 59-80. 
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Figure 15: Screen shots from the ‘Way out’ game 

 

  

Increased reaction times to the secondary task, i.e., longer time intervals between the stimuli and 

the response, indicate higher cognitive load. This type of task has the advantage of allowing us 

to pinpoint areas in the game where the user experiences higher cognitive load and we can relate 

them to the concentration of attention grabbing events.  We started by using the same game, 

“Way-Out'' because we already have information on the overall cognitive load imposed by the 

levels we tested, and information on the attention grabbing events. We created two versions of 

the secondary task. One is integrated in the game scenario and the other is not. For the integrated 

version we tell participants that sometimes the golem (the main character) overheats from time to 

time. When they see smoke coming out of the golem’s head, the participant needs to press the 

spacebar to prevent the golem from overheating. If they let the golem overheat three times, the 

game finishes. On the other version (not integrated in the game narrative), the participants are 

told that a red dot will appear from time to time in the centre of the screen, when that happens, 

they need to press the spacebar. If they miss three times they lose the game. We are currently in 

the process of collecting data for this experiment. We hope to have a tool that developers can use 

to assess the cognitive load imposed by their games (the plugin) and also want to check the data 

being collected against the attention grabbing events identified in the first study to see if they 

remain a good predictor of Cognitive Load. 

 

SECTION 3.3 - MOTION SICKNESS PREDICTION  

Cybersickness (CS) is one of the factors that can significantly hinder user experience in immersive 

Virtual Reality (VR) games and simulations. CS is a malady that may cause feelings of Motion 
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Sickness (MS) such as nausea, general unwellness, blurry vision, among others, as a result of 

VR immersion. While there are techniques to reduce the likelihood of CS occurrence, developers 

cannot confidently foresee their need as current CS severity measuring tools, such as 

questionnaires, detect it only post-factum, thereby requiring intensive human testing to assess 

what CS reduction measures must be taken. 

With this in mind, we have developed a machine learning model capable of automatically 

predicting CS occurrences of a VR experience based on Head-Mounted Display (HMD) eye-

screen video and user control input. We collected data from 22 participants while immersed in a 

stylized flight simulator VR game depicted on Figure 16 that we used to develop the model. 

Participants reported feelings of CS, at every minute, using the Fast Motion Sickness 

Scale7. We applied several machine learning approaches and finally settled in a Random Forest 

model that is able to predict CS with an accuracy of 72.9%. The algorithm used features like the 

colour of the image pixels, the video optical flow, and user input to predict the occurrence of CS 

in two classes (present or not) for each minute of video. Our approach is more suited to automated 

testing than the previous approaches, as it only needs the actions performed and the video 

presented to the user, while others8 depend on physiological measures of players. 

We have yet to test whether the predictive model trained using one VR game would be applicable 

to another game with similar levels of accuracy or if new training is required for each different 

game. Even if new training is indeed required, the approach can nonetheless be used to save 

countless hours of user testing, as the predictive model can be reused as many times as needed 

after being trained.  

       

 
Figure 16:  Faceted Flight - A stylized stunt flight VR simulator that was used to develop and test our CS 

predictive model. 

 
7 B. Keshavarz and H. Hecht. Validating an efficient method to quantify motion sickness. Human factors, 

53(4):415–426, 2011. 
8 R. Islam, Y. Lee, M. Jaloli, I. Muhammad, D. Zhu, P. Rad, Y. Huang, and J. Quarles. Automatic 

detection and prediction of cybersickness severity using deep neural networks from user’s physiological 
signals. In International Symposium on Mixed and Augmented Reality (ISMAR), pp. 400–411. IEEE, 
2020. 
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SECTION 3.4 - DIFFICULTY ESTIMATION 

The difficulty of a level, and more importantly, the progression of difficulty of a series of levels, 

can have a significant impact on the user experience and learnability of a game. As such, we 

have developed methods to rank a series of levels in terms of their difficulty.  

We have decided to use different types of errors as a way to measure the difficulty of a level. The 

main rationale behind this approach is that a level can be considered more difficult than another 

if the same degree of errors to the perfect sequence of actions leads to a worse outcome. For 

example, if a random timing error introduced to a perfect gameplay leads to the agent failing to 

complete a level 70% of the time whereas it only leads to the agent’s failure 30% of the time in 

another level, we consider that the first level is harder than the second, at least regarding timing 

related mistakes from the player. 

We have implemented 3 different error generation methods and used them to order a number of 

levels of a platformer game in terms of difficulty. The ranking is done by training agents to solve 

the levels based on reinforcement learning and then adding noise to the solution. The lesser the 

amount of a given type of noise needed to make the agent unable to solve the level, then the 

greater the predicted difficulty of the level. An example ranking by increasing difficulty of the levels 

of a platformer like game based on timing errors can be found in Figure 17.  

 

Figure 17: Ranking of a set of 22 levels based on increasing difficulty. 

 

The indicators of difficulty also help evaluate the hardness of finding a weakness in the system 

under test. In the intrusion scenario for testing the patrol of a powerplant in the MAEV platform, 

one of the pilots of the iv4XR project, we use indicators of difficulty in order to evaluate how good 

the patrol is. The indicators are based on analysing the interaction of the intruder agent with the 

patrol. Moreover, in the case of the powerplant use-case, we not only have one intruder agent but 

a full archive composed of a population of successful RL intruder agents. This is the case 

because, to solve the powerplant problem, we used a QDRL (Quality-Diversity Reinforcement 

Learning) approach that tries to find multiple and diverse solutions to the same RL problem.  We 

leverage the population of RL intruders in order to compute more precise indicators. We used 

three types of indicators. The first one is the stress indicator, being the average distance during 
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one intrusion episode between the intruder RL agents and the fixed patrol guards. Figure 18 below 

is a visualisation example of how each intruder from the QDRL archive is stressed by the proximity 

of the guards (in blue) as illustrated by the colour of each intruder going from green (not stressed) 

to red (stressed). 

 

 

Figure 18: the stress indicators on how close the intruder is to the patrol. 

 

The second indicator is the delay indicator. For each agent we compute how sensitive they are to 

delays in the execution of their actions. If adding delays to execution of the actions is harmless to 

the performance of the agent, then it is an indicator that the difficulty is small. We report in Figure 

19 (left) how our agents’ performance evolve with delays. Each curve corresponds to a different 

intruding scenario with a different patrol pattern. The y axis is the percentage of agents in the 

population that successfully intrude, and the x axis is the amount of the delay added to the 

execution of an action. 

 

Figure 19: Delay indicator, robustness to delay in the execution of the action. 

 

The third indicator is the noise indicator. For each agent we compute how sensitive they are to 

noise added to their actions. If adding large noise of the actions is harmless to the performance 

of the agent, then it is an indicator that the difficulty is small. We report in Figure 19 (right) how 

our agents' performance evolves with noise. Each curve corresponds to a different intruding 
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scenario with a different patrol pattern. The y axis is the percentage of agents in the population 

that successfully intrude, and the x axis is the amount of the noise added to an action. 

SECTION 3.5 - VALIDATING THE PLOT OF INTERACTIVE NARRATIVE GAMES 

Many games and simulations include interactive dialogue. When the choices made during such 

dialogues impact the environment and possible future choices, then it is paramount that these 

interactive narratives are well tested to ensure a positive UX. 

As such, we study interactive narrative games to develop a model consisting of a set of metrics 

for testing interactive dialogues. Using this model, we developed a prototype for the Story 

Validator tool. This tool allows game writers to experiment with different hypotheses and narrative 

properties in order to identify inconsistencies in the authored narrative and predict the output of 

different playthroughs with visual representation support. We conducted a series of user tests 

using the Story Validator (Figure 20), to investigate whether the tool adequately helps users 

identify problems that appear in the game’s story. The results showed that the tool enables 

content creators to easily test their stories, setting our model as a good step towards automated 

verification for assistance of authoring interactive narratives. Full details of the model and 

evaluation can be found in the published paper9. 

 

 
Figure 20: The Story Validator GUI. 

 

 
9 Carolina Veloso and Rui Prada: “Validating the plot of Interactive Narrative games” in proceedings of 

CoG 2021- International Conference on Games, pp. 1-8, Copenhagen, Denmark, August 2021. IEEE.  
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SECTION 4 - UX BEHAVIOUR 

 

The behaviour and choices of a user when using a complex system will heavily impact the UX of 

that user. Similarly, the behaviour of a UX testing agent will also impact the UX predictions made. 

As such, it is important to ensure the behaviour of UX testing agents is adequate and 

representative of the users that might use a system. We have thus also conducted research on 

how to achieve this, which will be presented in the following subsections. 

In other Work Packages of the project, other behavioural modules were developed, focusing more 

on functional testing than UX testing. These behavioural modules can, nonetheless, be used with 

the previously described UX modules for the testing of UX much like the UX based behavioural 

modules would be used. The accuracy of the UX predictions could suffer from using behaviour 

that is not tailored for UX testing, but the information provided could still be valuable for developers 

and testers. Having UX information when running functional tests could also be used in order to 

save testing time in systems under test where running simulations with agents takes a significant 

amount of time. 

 

SECTION 4.1 - COVERAGE BASED BEHAVIOUR 

As mentioned in 4.2, PX testing is aimed to assist game designers to test the expected emotional 

experience during a game play as patterns of emotions that need to be verified over time and 

space. If these patterns do not fulfil design intentions, game properties can be altered, and the 

testing process can be repeated. To meet this aim, it is essential to have a set/suite of game 

executions that cover different player behaviour to assure that the UX testing results are reliable. 

Figure 21 shows the general architecture of PX testing, using as foundation the OCC predictive 

model of emotion explained in Section 4.2. It has four main components: a Model-based Testing 

component for generating tests, the Model of Emotions component implementing the 

aforementioned computational model of OCC emotions, a basic test agent for controlling the in-

game player-character, and the PX Testing Tool as an interface for a game designer towards the 

framework. The designer needs to provide the following inputs, which can also be seen in Figure 

21 (1): 

1. An extended finite state machine (EFSM) that abstractly models the functional behaviour 

of the game under test.  

2. A selection of which game events have impacts on the player’s emotions (e.g. defeating 

an enemy, acquiring gold).  

3. Characteristics that the designer wants to address in the agent to resemble a certain type 

of players, such as: a player’s goals and their priorities, the player’s initial mood and beliefs 

before playing the game, and the desirability of incoming events for the player. E.g. a 

player might experience a high level of positive emotions on defeating an enemy, while 

for another player who prefers to avoid conflicts, acquiring a gold bar could be more 

desirable. 
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Figure 21: Architecture of PX testing foundation using OCC-emotion model. 

 

Given the EFSM model, the Model-based testing component, (2) in Figure 21, generates a test 

suite consisting of abstract test cases to be executed on the game under test (GUT). To generate 

a test suite with a model-based approach, the EvoMBT10 tool developed for the iv4XR framework 

is used. Due to the abstraction of the EFSM model in EvoMBT, emotion traces cannot be obtained 

from pure on-model executions. They require the executions of the test cases on the game under 

test (GUT). An adapter is needed to convert the abstract test cases into actual instructions for the 

GUT. The basic test agent does this conversion. Attaching the Model of Emotions to the basic 

test agent creates an emotional test agent, (3) in Figure 21, which is able to simulate emotions 

based on incoming events. Via a plugin, the emotional test agent is connected to the GUT. Each 

test case of the test suite is then given to the agent for execution. The agent computes its 

emotional state upon observing events and records it in a trace file. Finally, when the whole test 

suite is executed, the PX Testing Tool component analyses the traces to verify given emotional 

requirements and provide heat-maps and timeline graphs of emotions for the given level (4) in 

Figure 21. 

 

Evaluation of emotional heat-maps. A heat-map shows patterns over space. It can be 

constructed for every test case, but we can also construct an aggregated heat-map of an entire 

test suite by merging the traces of its test cases into a single trace, and then calculate the map 

from the combined trace for every emotion as seen in Figure 22. 

 
10 https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/mbt/MBT.md 

 

https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/mbt/MBT.md
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Figure 22: Aggregated Heat maps of emotions for all executed test cases 

 

UX Testing and Goal Definition. The testing of UX raises a non trivial problem: how can a tester 

define a test and the conditions over which it passes or fails? A desired (or undesired) experience 

can be a complex and spatio-temporal phenomena which cannot be easily verified by the common 

method of using “asserts” employed by traditional functional testing. A designer might have a very 

specific arousal experience that she wants users to have and requires a method of expressing 

that experience in a way that can be automatically verifiable.  

As part of the work done in WP4, we have developed a Linear Temporal Logic (LTL) based 

language which allows designers to specify their UX requirements over time and space. This 

language was developed with a focus on the testing of user emotions, but could be expanded to 

take in consideration other components of UX. 

Designers can also go beyond the testing of specific emotional experiences such as fear, hope 

and joy during a game play as patterns of emotions that need to be verified over time and space. 

If these patterns do not fulfil design intentions, game properties can be altered, and the testing 

process can be repeated. Although there are numerous combinations of emotions that can be 

examined for a game level, only a proportion of them matter for the designer to check.  

 

Formal emotion pattern Specifications for testing. The component is capable of verifying 

emotional requirements given as formal patterns of emotions. We define emotion patterns to 

capture the presence or absence of an emotional experience in a game. Such a pattern is 

expressed by a string of symbols, each representing the stimulation (intensity rise), or lack of a 

certain emotion type. 

 

Definition. An emotion pattern is a sequence of stimulations e or ¬e, where e is one of the 

symbols H, J, S, F, D and P. Each represents the stimulation of, respectively, hope, joy, 

satisfaction, fear, distress, and disappointment. 
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For example, the pattern JFS is satisfied by traces where the agent at some point becomes 

satisfied (S) after a stimulation of joy (J), but in between it also experiences a stimulation of fear 

at least once. Another example is J¬F S. when there is no stimulation of fear between joy and 

satisfaction. The presence of this pattern indicates the presence of a ’sneak’ route, where a goal 

can be achieved without the player having to fight enough for it. Although there are numerous 

combinations of emotions that can be examined for a game level, there is only a proportion of 

them that matters for the designer to check. As a requirement, recall that a pattern can be posed 

as an existential requirement, i.e. Sat(p), or need to happen for all game-plays, i.e. Valid(p) or 

need to unwitnessed for all game-plays, i.e., USat(p). It is also essential to clarify that the choice 

of which emotion patterns are to be required can vary among game-levels, as expectations on 

the occurrences of patterns depend on the design of the levels. E.g. a game level with Sat(DHS) 

would provide at least one thrilling game-play. But if it is intended to be an easy level for beginners, 

the designer might want to insist on UnSat(DHS) instead. We have collected a number of emotion 

pattern requirements from the designer of the specific level, ranging from some simple ones, to 

more complex ones. The main expectation of the designer is to ensure that the designed level is 

enjoyable by experiencing different positive as well as negative emotions during the game-play 

and to avoid the player getting bored. We interpret boredom as the absence of active emotions 

in the agent's emotional state for some time. As can be seen in Table 1, while most requirements 

are verified during the test, there are requirements like Sat(J¬S) that are failed. This requirement 

indicates the designer expects at least one execution path where joy is stimulated at least once 

thought the execution, but the agent never reaches the goal with satisfaction. Finding Sat patterns 

that fail to be witnessed, or UnSat patterns that are witnessed, assists the designer to further 

change their game level and run the agent through the level again for further testing. For example, 

here, the fail on Sat(J¬S) is an indication the designer needs to put some challenging objects like 

fire or enemies in the vicinity of the goal, when the agent has the goal in sight. 

 

Table 1: emotion requirement verification using iv4xr model-based generated test suite. H= hope, F = 

fear, J= joy, D= distress, S= satisfaction, P = disappointment and ¬X = absence of emotion X. 

 

 

The full explanation of the extended pattern language to write formal emotion specifications based 

on linear temporal logic is accessible online11.  

 
11 https://github.com/iv4xr-project/ltl-pxevaluation 

 

https://github.com/iv4xr-project/ltl-pxevaluation
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SECTION 4.2 - PERSONA AGENTS - HUMAN-LIKE BEHAVIOUR 

 

How does a player play? For most games and simulations, there is not a single answer. In the 

exact same scenario, two different users can behave in completely distinct ways. This makes the 

task of simulating user behaviour a complex one. In most games, it is unfeasible to simulate every 

possible sequence of actions a player might do. Even when this is possible, many of those 

sequences of actions might be highly unlikely to be chosen by a player, whereas others might be 

extremely common. Knowing which sequences of actions better reflect the behaviour of real users 

can help developers and testers make better decisions. 

In this section, we describe a pipeline for generating persona agents, that is, agents whose 

behaviour represents a subset of users. To do so, and having already collected user traces, we 

will begin by clustering those user traces in order to identify persona clusters, meaning subsets 

of users that behave similarly. We will then use an evolutionary algorithm to evolve genetic agents 

that mimic the behaviour of the representatives of the identified persona clusters. Having done 

so, we will thus obtain a set of persona agents. 

We describe here the implementation of the pipeline in the game "Flower Hunter", previously 

described in Section 4.1. Using 91 player traces, we are able to generate 8 persona agents that 

successfully represented 89% of the players.  

To have agents that imitate a subset of users, we must first define these subsets of users, which 

will henceforth be called persona clusters. If a game or system already has a defined set of 

persona clusters, then this step is already accomplished, and the sets can be used as they are. 

However, this will not be true for most systems. To obtain persona clusters from data, we can run 

a clustering algorithm on collected behavioural traces from real users. By doing so, we will obtain 

clusters that contain traces that are similar between themselves. The degree of similarity between 

traces on a cluster and the relevant information for the clustering will depend on the algorithm 

used. 

Once we have the persona clusters, we will need to design agents that behave in accordance to 

each one of these clusters: the persona agents. We propose achieving this by using genetic 

agents, being agents that have their behaviour defined by a set of parameters, along with an 

evolutionary algorithm. By doing so, defining a persona agent becomes finding the set of 

parameters that characterises the genetic agent that best represents a given persona cluster.  

A diagram of the pipeline for defining persona agents can be found in Figure 23. To use this 

pipeline on any given system, four things need to be implemented: a behavioural distance metric, 

a clustering algorithm, a genetic agent, and an evolutionary algorithm. With these four 

components, user traces can be turned into persona agents. The quality and coverage of these 

persona agents will obviously depend on the implementation of the components as well as on the 

quantity and quality of collected user traces. 
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Figure 23: Diagram of the persona agent pipeline, identifying the 4 main components that need to be 

implemented: a behavioural distance metric; a clustering algorithm; an evolutionary algorithm; and a genetic 

agent. 

 

We had 91 users play a level of the “Flower Hunter” game (Figure 11), the majority of which were 

first year students of a Psychology bachelor. These users were explained the mechanics of the 

game and given the liberty to play however they chose, with no time constraints. Key-pressed 

and other in-game data were collected, like the position of the player in the map and the positions 

of the game objects. These form collected traces that serve as the data-set for both training and 

validating the pipeline here described. 

 

 

Behavioural Distance Metric. To define a behavioural distance metric, we must decide what 

constitutes similar behaviour, as the metric will attribute a value of similarity (or dissimilarity) to 

any given pair of user traces. To define a behavioural distance metric that is the best for every 

single system and situation is not a trivial task, if at all possible. It might be of interest to a game 

designer to consider users that choose to go left instead of right as having different behaviours, 

whereas another designer or even the same designer trying to evaluate a different thing, might 

prefer to consider them as the same behaviour as long as both users are "exploring".  

We decided to consider that players that take different routes and choose different actions when 

playing a level of the "Flower Hunter" game are behaving differently. Behaviour can then be seen 

as the sequence of low level actions chosen by a player. We chose to consider the lowest action 

level, that is, the actions dictated by the keys being pressed at each of the game's time steps. A 

player game trace can therefore be represented by a string such as "dddwsd", meaning the player 

pressed the "d" key for the first three time steps, then the key "w" in the fourth, followed by the 

keys "s" and "d" in the fifth and sixth time steps respectively. 
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To match this decision, we implemented a distance metric based on the Levenshtein distance12 

between the string representation of the sequence of low level actions. We therefore judged the 

similarity between two game traces based on the minimum number of edits, deletions and 

additions that are required to transform the string representation of one of the traces into that of 

another. For example, a trace represented by the string "dddwsd" has a Levenshtein distance of 

4 to the trace represented by the string "wwddsdd". 

 

 

Clustering Algorithm. Having settled on a metric of behavioural distance, we had now a 

foundation to choose the clustering algorithm we would be employing to find the persona clusters. 

We did not have previous knowledge that allowed us to predict the number of persona clusters 

we could expect to find. Therefore, we had preference for using a clustering algorithm that did not 

require the number of clusters to be given as a parameter. We also required a clustering 

algorithms that did not rely on Euclidean distances and could be used with the behavioural 

distance metric we had previously defined. It would also be a bonus if the clustering algorithm 

could determine which player trace was the most representative of each persona cluster. 

With the aforementioned in mind, we decided to use the affinity propagation clustering algorithm13, 

as implemented by the scikit-learn python library. This algorithm allows for any distance metric to 

be used, defines the number of clusters automatically, and returns the player trace that is most 

representative of each cluster. 

 

 

Genetic Agent. A genetic agent is an agent whose behaviour is dictated by the values of a set of 

parameters, which can be thought of as the genome of the agent. Different sets of parameters 

will produce different behaviours. This encoding of the agent's behaviour into a set of parameters 

allows the use of evolutionary algorithms14 as a way to find genetic agents that behave in a 

particular way. In this section, we will present our implementation of a genetic agent for the 

"Flower Hunter" game.  

For the agent to represent player behaviour, we had to endow it with the ability to do that which 

players do. Namely, the agent had to be able to move and explore the map, fight enemies, collect 

items and reach the final objective. To achieve this, we began by endowing the agent with the 

ability to navigate the map.  

By creating a graph of the visited locations of the map, the agent was able to navigate by finding 

the shortest path to a given known location and following it. Having this, the agent could also 

reach any object it found, including enemies. Endowing the agent with the ability of fighting 

enemies was only a question of having the agent move towards the closest enemy and begin 

attacking when the enemy was within reach. Our agent was thus able to do everything required 

 
12 Levenshtein, V.I., 1966, February. Binary codes capable of correcting deletions, insertions, and 

reversals. In Soviet physics doklady (Vol. 10, No. 8, pp. 707-710). 
13 Frey, B.J. and Dueck, D., 2007. Clustering by passing messages between data points. science, 

315(5814), pp.972-976. 
14 Bäck, T. and Schwefel, H.P., 1993. An overview of evolutionary algorithms for parameter optimization. 

Evolutionary computation, 1(1), pp.1-23. 
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to play the game. It had no way, however, of knowing when it should do any of these things nor 

how it should explore the level. This will be solved by the genetic nature of the agent. Each genetic 

agent will have a set of parameters, the value of which will dictate the actions of the agent. The 

chosen parameters are the following: 

 

 
 

Each of these parameters can have a value between 0 and 100. The first four parameters encode 

the preference the genetic agent will give to reaching the objective, fighting enemies, gathering 

currency and gathering health items, respectively. The fifth parameter encodes the method of 

exploration that the agent will pursue. Different combinations of parameters will therefore lead to 

different behaviours from the agent even when facing the same situation.  

In the next section, we will describe the evolutionary algorithm used to find the sets of parameters 

that will be used for the persona agents. 

 

 

Evolutionary Algorithm. Having a clustering algorithm that finds the persona clusters present 

on a set of player traces and a genetic agent that behaves differently according to its genome, we 

now need a method of finding the set of parameters that dictate a behaviour that most resembles 

the traces found on each persona cluster. To do so, we will use an evolutionary algorithm. 

For each persona cluster, we initialise a population of 300 genetic agents with random sets of 

parameters. At each generation, all of the agents play the same level of the “Flower Hunter” game. 

Their actions are recorded and compared to the action traces of the representative player trace 

of the persona cluster. This comparison is done using the behavioural distance metric previously 

described. This distance is then negated and used to assign a fitness to each of the agents: the 

greater the distance between the agent trace and the cluster representative trace, the lower the 

fitness of the agent. All fitness values will therefore be negative, with the highest possible fitness 

being 0, when the traces compared are exactly the same.  

Once every agent has been assigned a fitness, the 30% with the highest fitness are chosen to 

reproduce and be a part of the next generation. The reproduction is done by randomly selecting 

two parent agents and randomly mixing their parameters to create a new child agent. With a 20% 

probability, each of the parameters can suffer a mutation and take a random value. The top 30% 

of the population thus reproduces between itself until the population has once again 300 agents. 

This process is repeated for 60 generations. The agent with the set of parameters that allow it to 

have the best fitness in the last population is then chosen as the persona agent. 
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Table 2: Persona clusters found by the clustering algorithm, along with their number of members, fitness of 

the corresponding persona agent, and whether the persona agent was accepted as representing the 

behaviour of the cluster.  

 
 

 
Figure 24: Representation of the game paths taken by the persona cluster representative (left, in green) 

and the corresponding persona agent (right, in blue). 

 

Results. The first step of the persona agent pipeline was clustering the 91 player traces we had 

collected into clusters that represent different playing styles, obtaining 16 clusters. As can be seen 

on Table 2, some of these clusters have only one member, representing outliers that behaved in 
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such a particular way that they could not be added to any of the other clusters. One of these 

players went around in circles multiple times whereas another went back and forth in the same 

corridor. We decided such traces should not be discarded from the data-set as they still 

represented player behaviour, however strange it might be. Other clusters have many members, 

like cluster number 10, which has 29 members and represents all players that went on a straight 

line to the rightmost corner of the game then straight down to the final objective (Figure 24). 

Having defined the persona clusters, we then evolved the parameters of 16 persona agents so 

that each one of them represented the behaviour of one of the persona clusters. We thus obtained 

16 persona agents, the fitness of which can be found on Table 1. Only agents with a fitness above 

-400 were considered acceptable as representatives of their persona cluster. This value was 

chosen through observation. Traces with a fitness above -400 could not be spotted as outliers 

when compared to the player traces of the cluster. The traces of the accepted persona agents 

can be seen next to the traces of the corresponding persona cluster representative on Figure 24. 

In the end, only half of the persona clusters were properly represented by a persona agent. 

However, the 8 persona agents that were accepted represented 89% of the player traces 

collected, as every cluster with more than 2 members was successfully represented. This was an 

unexpected result as the number of members in a cluster has no influence on the evolution of the 

agent, given the fitness is always calculated based only on the representative of the cluster. 

 

SECTION 5 - EXAMPLE WORKFLOWS 

In the previous sections, we have explained the architecture of our SETAs and the several 

modules that were researched and developed, both for the prediction of components of UX as 

well as for the generation of UX testing agent behaviour. In this section, we aim to clarify how the 

SETAs can be used by designers and test engineers during the development of a XR system.  

SECTION 5.1 - USING FORMAL EXPERIENCE SPECIFICATIONS FOR TESTING 

One application of our SETAs is the automatic evaluation of UX for a given set of already created 

levels or scenarios. To do this, the designer needs to connect the System Under Test (SUT) to 

the iv4XR framework. Once this is done, the designer can define a set of Desired Experience 

Outcomes (DEO) describing the experiences that are expected (or undesired) for players overall 

or for a specific subset of players. They can then run SETAs on the set of levels/scenarios that 

will be evaluated. These SETAs will be equipped with the relevant modules for the UX component 

being evaluated. By running the SETAs on the levels/scenarios, the resulting UX predictions can 

be automatically compared to the defined DEO and the designer can be informed about the results 

of the test. The information given to the designer can be a simple “pass” or “fail” for each 

level/scenario or be complemented by more information, like the heat maps shown in Section 4.1. 

An overview of this example workflow is shown in Figure 25. 

To give a concrete example, let us imagine a designer testing an exploration game in VR. This 

designer has connected the VR game to the iv4XR network and now wishes to evaluate the UX 

of a number of levels that have been designed. Given the exploratory nature of the game, the 

designer decides that the most important component of UX that she wants to test is the emotional 
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state of the player, with a special focus on the arousal level. She wants to ensure players will not 

become bored (low arousal) when traversing the level. The designer had already collected arousal 

traces in previous levels of the game using an approach similar to the one described in Section 

3.1.2. This allows her to use the machine learning based emotion prediction module described in 

Section 3.1.2 to automatically estimate the level of arousal. She is also interested in knowing if 

players can feel Cybersickness when playing the game, so she also adds the module described 

in Section 3.3, thus having two different UX metrics modules implemented in her SETA. As she 

is mostly interested in knowing what users would do and already has collected traces, she decides 

to use the behavioural module described in Section 4.2 to find the different types of players she 

has and simulate their behaviour in the new levels she is testing. By defining the UX metrics and 

the behavioural module for the SETA, the designer has thus created the UX testing agent that 

best fits her system under test and testing goals.  

As a formal experience specification, our designer can decide to only accept levels that have at 

least two peaks of arousal. This can be described as Sat(AA) according to the specification 

language described in Section 4.1. Having both a SETA and a formal experience specification, 

the designer can finally run the SETA through all the levels and have automatically tested whether 

the level and SETA pair passes the constraints defined in the formal experience specification or 

not. 

 

 
Figure 25: Workflow for the ranking and selection of a set of levels/scenarios based on UX criteria. 
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SECTION 5.2 - USING UX TEST AGENTS FOR EXPERIENCE BASED PROCEDURAL CONTENT 

GENERATION 

Another application of our SETAs can be the automatic generation of scenarios (e.g. game levels) 

that induce a specific desired UX. To do this, the designer needs once again to have the SUT 

connected to the iv4XR framework. A parameterized Procedural Content Generator (PCG) that 

is able to create new levels/scenarios based on a given set of parameters is also needed, and 

this is not directly offered by the framework as it is very SUT dependent. The iv4XR toolkit does 

offer, however, 2D level generators that can be modified to be used by other SUTs. The designer 

then needs to define the set of Desired Experience Outcomes (DEO) that describe the 

experiences that will guide the generation of the new levels/scenarios. A population of 

levels/scenarios created by the parameterized PCG engine can then be created and evolutionary 

algorithms used to evolve this population to best match the DEOs. The fitness of the 

levels/scenarios will be given by running SETAs equipped with the relevant modules for the UX 

component being evaluated on each level/scenario. The closer the predicted experience is to the 

DEOs, the better the fitness of the level/scenario and the higher the chance that this level/scenario 

and its offspring will remain in the population. When the evolutionary algorithm reaches its final 

generation, the designer will be presented with the set of levels found that best match the DEOs 

that had been defined. An overview of this example workflow is shown in Figure 26. 

 

 
Figure 27: Workflow for the automatic generation of new levels/scenarios based on a desired UX.  
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SECTION 6 - CONCLUSIONS 

The goal of WP4 was to create Socio Emotional Test Agents (SETAs) capable of testing the UX 

of systems connected to the iv4XR framework. Such agents required both the ability to measure 

components of UX as well as the capability of behaving in ways that were aligned with the testing 

of UX. 

In order to create such SETAs, we developed UX metrics modules capable of emotion prediction, 

cognitive load prediction, motion sickness prediction, difficulty estimation and validating the plot 

of interactive narrative games. We also developed behavioural modules that allow the SETAs to 

either mimic the behaviour of particular types of users or to behave in ways that try to maximise 

emotional coverage. We further worked on creating a specification language capable of defining 

UX goals so that they could be automatically tested. 

Overall, we created solutions that allow designers and testers that connect their applications to 

the iv4XR framework to create tailored made SETAs to automatically test different components 

of UX. 

 


