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EXECUTIVE SUMMARY 

This deliverable D3.5 is a report that describes the existing Functional Test Agents (FTAs) of the 

iv4XR framework and their technical approaches for testing the XR use cases. The project's 

GitHub repository contains extended and updated documentation regarding the specification of 

each FTAs. 

 

The document starts with an overall description of the integration of the FTAs within the iv4xr 

framework. Then it continues as follows: 

1. Goal Solving agents that follow goal instructions to verify the XR functionality. 

2. Reinforcement Learning agents that learn gradually from the environment to solve tasks. 

3. Exploratory agents that execute non-sequential actions to verify the system’s robustness. 

4. Coverage agents that use a model crafted by a domain expert to generate test cases. 

5. Augmented Reality agents that follow goal instructions to verify the AR scenarios. 

ACRONYMS AND ABBREVIATIONS 

FTA Functional Test Agent 

XR eXtended Reality 

VR Virtual Reality 

AR Augmented Reality 

RL Reinforcement Learning 

QDRL Quality-Diversity Reinforcement Learning 

MBT Model Based Testing 

SUT System Under Test 

WOM World Object Model 

GUI Graphical User Interface 

SE Space Engineers 

DFS Depth First Search 

EFSM Extended Finite State Machine 

LTL Linear Temporal Logic 
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OVERALL CONCEPTS, ARCHITECTURE, DESIGN FUNCTIONAL TEST AGENTS 

(FTAS) 

 

 
Figure 1: Different types of FTAs in iv4XR. 

 

We distinguish between four sub-types of FTAs in WP3, of which three of them follow similar 

exploratory capabilities: 

● The first type of agent makes deliberations to choose the appropriate strategies that will 

allow it to solve goals(Goal-solving TA circle in Figure 1). 

● The second type of agent does not follow specific goal structures but learns from the 

executed goal interactions to verify if it is possible to achieve a final state (RL section from 

Explorative TA circle in Figure 1). 

● The third type of agent explores the XR environment with a Scriptless approach while 

verifying if the system is robust enough to respond to multiple and unexpected user 

interactions (TESTAR section from Explorative TA circle in Figure 1). 

● The fourth type of agent can follow the space of interactions that are abstractly 

represented in a model to cover all the transitions (MBT section from Explorative TA circle 

in Figure 1). 
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These FTAs are able to test the SUTs from WP5, by using the Framework-Core from WP2, as 

is also shown in Figure 1.  

1. GOAL SOLVING FTA 

This section will present a number of goal solving algorithms available to iv4xr functional test 

agents. They are used to target different classes of problems, but all are relevant for XR setups. 

To allow them to be discussed in a similar way, let us first introduce a generic setup for goal 

solving problems. The system under test (SUT) will be abstractly modeled as a Finite State 

Machine (FSM) M=(𝛴,A,T,s0) where 𝛴 is M’s set of possible states (finite), A is a set of labels 

representing names of actions, T is a set of transitions between states, and s0∈𝛴 is the initial state 

(for simplicity we will assume just a single initial state). A transition is a triple (s,a,t) where s is the 

origin state of the transition, t is the transition’s result state, and a is a label from A.  

 

The states in M can be seen as abstractly representing SUT’s actual states. A possible testing 

concern is, for example, to check the consistency of the actual state that is represented by some 

abstract state s, presuming that the testing program is given some methods to inspect the actual 

state. Note that for the same SUT, we may have multiple models, e.g. providing different 

perspectives on the SUT. For example we can have a model M1 that captures the SUT’s functional 

logic, and a model M2 that captures navigation between different key locations in the SUT’s virtual 

world. 

 

A test agent can be seen as a program that drives M to move from one state to another by 

executing its transitions, starting from the initial state. E.g. the agent may want to visit a particular 

state s in M to check the consistency of the actual state that s represents, or to check that all 

outgoing transitions of s can indeed be executed. 

 

We will also distinguish between a complete model of the SUT, and the model that the agent 

knows. Imagine a model M0 that we can regard as the complete model of the SUT. By “complete” 

we do not mean that it captures every aspect possible of the SUT (such a model will not be a 

‘model’ anymore); but rather a model that with respect to some chosen abstraction can be 

regarded as complete. It is not necessary that we actually have this M0, it is just a useful concept 

to introduce. An agent can be given a partial model M, e.g. because constructing the complete 

M0 takes too much work. An agent can also come with an ability to learn M0. That is, it can be 

given some very limited M at the beginning, but as it interacts with the SUT it gradually extends 

M. 

 

Def.1.1: A model M1=(𝛴1,A,T1,t0)  is as submodel of M2=(𝛴2,A,T2,s0) if (1) the initial states are the 

same, (2) 𝛴1 ⊆ 𝛴2, and (3) any non-hidden transition of T1 is also a transition in T2. 

 

Def.1.2: A model is said to have hidden transitions if it contains transitions of the form (s,a,?) 

where “?” is a symbol to mean unknown. This means that there is a transition labeled with a 

available on the state s, but it is unknown where this transition leads to. 
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We can distinguish several testing setups: 

 

● Full model setup: the agent is given a complete model M0. This setup is not always 

possible or feasible. In some situations, M0 can be extracted automatically from the SUT. 

If there is no such mechanism, then it has to be hand crafted, which can be expensive. 

● Partial model setup: the agent only knows a part of M0. The knowledge can be partial in 

various ways. E.g., it may know some sub-model M of M0. In a different setup, the agent 

might know which transitions are available at each state, but it does not know where those 

transitions would lead until it executes them (in other words, M has hidden transitions).  

● Online testing setup. In this setup, transitions are executed on the actual SUT. The benefit 

of this is that this allows us to check the SUT’s actual states. The drawback is that online 

execution of a transition is slow. Since many combinations have to be tried, overall such 

an approach is computationally expensive. If the agent already knows which sequence of 

transitions it wants to do, the cost is usually acceptable. Pre-planning the transitions works 

in the full model setup, but may not be possible in a partial model setup, in particular if it 

has many hidden transitions. In the latter case, it may become necessary for the agent to 

try out different transitions online in order to figure out how to get to a certain state. The 

computation cost of this can be excessive. 

● Offline testing setup. The agent executes the transitions on M without executing them on 

the SUT. This still allows us to check some correctness properties, e.g. to check if a certain  

predicate 𝜑 over 𝛴 is reachable. The more important benefit we get from this setup is the 

ability to plan, e.g. to find a sequence of transitions that ends in some desired state, or to 

find a sequence of transitions that would cover some transitions, or a pair of transitions. 

Importantly, the solution is calculated offline! In the full model setup, this would allow us 

to generate a test suite, consisting of sequences of transitions as test cases, that would 

cover e.g. all transitions in M0, or all pairs of transitions in M0. Since offline executions do 

not require executions on the SUT, offline planning is computationally cheap (fast). Once 

obtained, the sequences can be executed online on the SUT to do actual testing. While 

the online testing part would still incur its computation cost, the more complex calculation 

to search for a covering test suite is done offline, which would save us a lot of computation 

cost. 

 

Imagine that the agent knows a model M=(𝛴,A,T,s0) of the SUT. This M is not necessarily the full 

model M0. A goal is represented by a predicate 𝜑 over 𝛴. In an agent-based setup, a goal 

represents states that we want the agent to be. In terms of testing, these could be states that the 

agent needs to check for their consistency.  

 

Def.1.3: A goal 𝜑 is solved from a current state s if we can find a sequence 𝜎 of transitions in T 

that would bring M from the state s to a state s’ such that s’ ⊨ 𝜑 (𝜑 is true on s’). Such a 𝜎 is called 

a solution of 𝜑. 
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A goal solving algorithm is simply an algorithm for finding a solution for a given goal. 

1.1 OFFLINE GOAL SOLVING WITH NO HIDDEN TRANSITION 

In this setup, M may be partial, but it does not have any hidden transitions. This setup is pretty 

straightforward to solve, e.g. we can just apply an offline depth first search (DFS) on M to find a 

state satisfying goal 𝜑. Since there is no hidden transition, we can also solve 𝜑 completely offline. 

Of course, we can then only solve 𝜑 in this way if it is solvable with the information we have on 

M. 

 

In the case that 𝜑 specifies a singleton state {t}, the problem is the same as the pathfinding 

problem over a graph, namely to find a path from the current agent state s to t. For this iv4xr 

provides an implementation of the A* algorithm, which is efficient and often gives a better 

(shorter/shortest) path than DFS, provided a concept of distance between nodes/states is given. 

A typical setup where this is used is when M is actually a navigation graph NG over a virtual world. 

Every s in 𝛴 represents a visitable location in the virtual world. A transition between two states s 

and t means that the agent can travel (in the virtual world) in a straight line from s to t without 

encountering any obstacle (e.g. there is no tree in between that can block this travel). The distance 

between them can be defined as the physical straight line distance between them. Some SUT 

can produce a complete navigation graph NG0 which the agent can exploit. Else iv4xr provides a 

method that can construct a navigation graph on the fly (as the agent explores the world).  

 

List<NodeId> findPath(Navigatable NG,  NodeId start,  NodeId  goal) 

 

Figure 1.1: the API for invoking A* pathfinder. 

1.2 OFFLINE GOAL SOLVING ON MODELS WITH EXTENDED STATE STRUCTURES 

Consider now a setup where M is extended with a set V of variables. Transitions can be guarded 

by a condition/predicate over V and can update the values of V as well. The domain of V (the 

values that the variables can take) does not need to be finite. Such an M is also called extended 

finite state machine (EFSM) [AP11]. The states in 𝛴 is then called the ‘abstract states’ of M. If full 

state is a pair of (s,v) where s is an element of 𝛴 and v is a vector of the current value of the 

variables in V; it is also called configuration. 

 

Note the space of possible configurations of an EFSM can be infinite. EFSM is also Turing 

complete. 

 

Consider a more expressive formulation of the goal, namely using a Linear Temporal Logic (LTL) 

[BK08] formula 𝜓. Such a formula is a predicate over infinite sequences of states, rather than 

simply a state predicate. Iv4xr supports LTL. A fragment of supported syntax is shown below; a 

more complete description is presented in the D2.4 report. Below, p is a state predicate as an 

atom, 𝜓 is an LTL formula, and F is either a state predicate or an LTL formula. 
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F   ::=   p  |  𝜓 

𝜓   ::=   now(p)   

       |  next(F)      -- also known as the X operator 

       |  always(F )     -- also known as the ⛶ operator 

       |  eventually(F )    -- also known as the ⬦operator 

       | ltlAnd(𝜓0, … , 𝜓n−1)    -- conjunction ∧ 

       | ltlNot(𝜓)     -- negation ¬ 

 

The semantics of LTL formulas over infinite sequences is defined as usual [BK08]1. Traditionally 

LTL is used for verification. That is, 𝜓 is used to express a correctness requirement, and we would 

then want to know if all possible executions of M satisfy 𝜓. Here, we want to use 𝜓 as an 

expression of goal, e.g., it might be used to encode a certain test scenario (e.g. we want to have 

a run that first visit room-1 and then room-2, and so on). To simplify the discussion, we will only 

consider a setup where a solution is wanted with respect to M’s initial state s0.  

 

Def.1.4: given an LTL goal  𝜓, a solution to this goal is a “finite witness” of 𝜓. 

 

Def.1.5: An execution of M is a sequence 𝜋 of configurations starting in M’s initial configuration, 

and furthermore for any pair of consecutive configurations in 𝜋i and 𝜋i+1, there exists a transition 

in M that can be executed on 𝜋i and would result in 𝜋i+1. 

 

Def.1.6: A finite execution 𝜋 is a finite witness for an LTL formula 𝜓 if either: (1) any infinite 

execution that extends it would satisfy 𝜓 as well, or (2) 𝜋 contains a suffix that is cyclic, that when 

repeated indefinitely would yield an infinite execution that satisfies 𝜓.  

 

Defined as above, a solution for 𝜓 can be obtained by applying an LTL model checking algorithm 

e.g. as in [BK08], provided the space of possible configurations of M is still finite. In iv4xr, an 

implementation of LTL model checking is provided2. The iv4xr LTL model checker uses a double 

DFS approach similar to what is used in the SPIN model checker [Ben08]. The iv4xr LTL model 

checker actually applies bounded model checking (BMC), so it will actually work on M with an 

infinite space of configurations, though at the expense of losing the completeness guarantee. It 

can also give the shortest solution, by applying a binary search over the depth bound. 

 

It can be noted that the choice for LTL, rather than other modal logics such as CTL, has been 

deliberate. LTL, being a sequence predicate, gives a natural concept of executable solution (to 

goal solving). As defined in Def. 1.4, the solution of an LTL goal 𝜓 is a sequence of actions, which 

 
1 LTL is also discussed in D2.4, but note in D2.4 LTL is used to check the runs of test cases. These runs are finite, so 

there we need an LTL semantic over finite sequences. Here, we use LTL to specify a goal. In this setup the standard 
semantic over infinite runs gives us more expressiveness while retaining the ability to solve such a goal.  
2 The decision to implement our own model checker, rather than using an existing model checker, is mainly to allow 

easier and deeper integration with other modules within iv4xr and retaining the option to adjust or extend the checker 
as needed. As far as we know, iv4xr LTL model checker is the only LTL model checker that is implemented in Java. 
There are existing LTL model checkers, such as SPIN, or LTLmin. But SPIN, for example, does not offer APIs, and is 
limited to finite state space use cases, which is not necessarily our case in iv4xr. LTLmin has APIs, but is less suitable 
for handling states with possibly deep structures. 
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can be turned into a real test execution (of the action-sequence) on the SUT. Also, there is a 

standard procedure to find a solution, namely through model checking as pointed out above. 

 

Similar to SPIN, the iv4xr MC is lazy, which means that M does not have to be literally a graph-

like structure with explicit nodes and arrows. In fact, M can be implemented succinctly as a Java 

program, as long as it implements a certain interface (among other things, it requires the program 

to implement state cloning).   

 

In contrast to the navigation graph mentioned in Section 1.1, typically an EFSM model is used to 

also capture the functional logic of the SUT. Once we obtain a solution to a goal, we typically 

would want to execute it on the real SUT (e.g. as a test case). The actions from the EFSM are 

typically high level actions which may not be directly executable in the SUT. So, some adapters 

may be needed to translate them to primitive actions in the SUT. In our studies we typically use 

a fixed set of goal structures as our collection of possible actions (the A component). As a goal 

structure is executable (through a test agent), we then have the ability to execute a solution. 

 

Figure 1.2 below shows the main APIs of iv4xr bounded model checker (BMC). The constructor 

constructs a checker from a given model M of type/interface ITargetModel. The latter means that 

a “model” can be any Java program as long as it implements the methods of the interface 

ITargetModel. Figure 1.3 shows key methods of ITargetModel. Importantly, getCurrentState() 

needs to return the current model’s state, represented as an instance of IExplorableState. The 

latter requires that model states must be cloneable. 

 

The key methods that have to be implemented by a model are shown in Figure 1.3.  

 

BuchiModelChecker(ITargetModel model)  // constructor 

Path<Pair<IExplorableState,String>> find(LTL 𝜓, int maxDepth)  

Path<Pair<IExplorableState,String>> findShortest(LTL 𝜓, int maxDepth)  

 

Figure 1.2: the main APIs for constructing and invoking iv4xr LTL bounded model checker. 

 

interface ITargetModel : 

  IExplorableState getCurrentState()  

  boolean backTrackToPreviousState()  

  List<ITransition> availableTransitions()  

  void execute(ITransition tr) ; 

 

interface IExplorableState : 

IExplorableState clone() ; 

 

Figure 1.3: methods that should be implemented by a model, so that it can be targeted by iv4xr 

BMC. 
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1.3 ONLINE GOAL SOLVING THROUGH TACTICS 

In many setups the agent does not actually have a model to help it. A navigation graph may be 

available, or can be constructed on the fly, but an EFSM that models the functional logic of the 

SUT is much harder to come by. If reaching a goal state s is reachable through obstacle free 

travel, then having a navigation graph is enough to solve this goal offline. But more often than 

not, reaching a goal state requires that some logic in the SUT needs to be engaged. Without a 

model that captures the logic, we will then have to solve such a goal in an online way. In iv4xr we 

can define so-called tactics for solving goals. Essentially, a tactic is a set of guarded actions that 

define a heuristic for solving a goal.   

 

An iv4xr agent runs a loop; each iteration is called a deliberation cycle. During such a cycle the 

agent observes the SUT and then decides which action towards reaching a goal that is given to 

it. The interface to the SUT (the Environment component in Figure 1) should provide a set of 

primitive methods for controlling the SUT; these are the basic actions the agent can do. However 

a goal may require a run of many cycles to even get close to it, so choosing the right action at 

every cycle is not trivial. A tactic is essentially a logical statement that controls how the agent 

makes this choice.  

 

From a goal’s perspective, a tactic is an online solver, as it drives the agent to do a whole series 

of actions that eventually solves the goal. Obviously it is not possible to write a tactic that can 

solve all goals. Instead, a tactic is usually written as a solver for a certain family of goals. The 

concept of “goal family” can be captured by a parameterized goal. For example, let’s assume that 

the goal to reach an object in the same room can be solved by a general heuristic regardless of 

which specific object we try to reach. We can capture this by a goal e.g. reached(e) that is 

parameterized by the specific object e that we target. This can be solved by the same tactic that 

implements the heuristic, that can then solve reached(e) for any e, as long as it is located in the 

same room as the agent. 

 

It is usually easy to write tactics for solving simple goals. For a goal that is harder to solve, it is 

also possible to define a goal structure; with it we can introduce e.g. a sequence of subgoals to 

help the agent in solving its main goal. Such a construct is used when it is hard for the agent to 

come up with the subgoals by itself, so a human gives the subgoals. However, each subgoal has 

a known tactic to solve it.  

 

More about the tactic and goal structures of iv4xr agents are explained in Report D2.4.  

 

Let’s call a goal, which is not a goal structure, a basic goal. Such a goal has a tactic associated 

with it. With a goal structure we typically refer to a composition of basic goals and other goal 

structures. Having a library of basic goals, and a way to compose them allow us to treat these 

basic goals as high level transitions over the SUT state. That is, giving an agent a basic goal, and 

then running it to solve the goal, amounts to transitioning the SUT from one state (the one before 

the agent gets the goal) to another (the one after the goal is accomplished). Giving the agent a 

sequence of these basic goals amounts to executing a sequence of these high level transitions, 

to move the SUT to some new state. 
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As an example, Figure 1.4 below shows a level design in a 3D maze-puzzle game called Lab 

Recruits. It has three doors d1..d3 and four buttons b1..b4. The starting position of the player is 

indicated by the yellow circle. E.g. if we want to verify that door d3 can indeed be opened, the 

logic to do this is not so trivial. Doors can be opened (and closed) by toggling the right buttons. 

Opening d3 requires toggling b3, but access to it is guarded by a closed door d1. Moreover, 

toggling b3 would close d1 again.   

 

 
 

Figure 1.4: a screenshot from a level design in a 3D maze-puzzle game called Lab Recruits3. 

 

For this example game we have implemented a library of basic goals, it includes the following 

(notice that they are parameterized goals): 

 

● interacted(e) : is accomplished when the entity e is interacted with. This goal requires the 

agent to be located near e. 

● closeBy(e) : accomplished when  the agent  is located near e. If started in a location which 

is not near e, the tactic of this goal will guide the agent to e, provided there is an unblocked 

path to it. The game provides a navigation graph, so we can use it to do path planning. 

Importantly, note that “guiding” the agent would typically require multiple deliberation 

cycles to complete, during which multiple calls to primitive move-action have to be 

invoked.  

 

Imagine a testing task to verify that the door d3 can be opened. In terms of a goal predicate 𝜑d3 it 

can be defined as a predicate that is satisfied on a state where d3 is open. We have to check that 

such a state is reachable. This is done by formulating a sequential goal structure as shown below. 

It specifies the shortest scenario that could make d3 open: 

 

SEQ(closeBy(b1), interacted(b1), 

         closeBy(d1), closeBy(b3), interacted(b3), 

         closeBy(d2), closeBy(b4), interacted(b4), 

 
3 https://github.com/iv4xr-project/labrecruits  

https://github.com/iv4xr-project/labrecruits
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         closeBy(d3), 

         assertTrue(..., check that d3 is open) 

 

If this goal structure can be completed, the test is passed. Else it fails. 

 

Arguably the test formulation above requires the full sequence of high level transitions that solves 

𝜑d3. One might wonder if it is possible to generate this sequence, rather than having the developer 

manually specifying it. This will be discussed in the next subsection. However, do note that even 

if the sequence has to be given, they refer to high level transitions. The translation of such a 

transition to actual runs of deliberation cycles, and how the agent should choose which primitive 

action to execute (which is not trivial!) at each cycle, are abstracted away from the testers’ 

concern. 

 

Tactics and goal structures are very expressive, but we do need to program a set of basic goals 

(and their tactics). These are quite domain specific; so tactics that work for one SUT may not work 

for another (though their design patterns might be common). However, programming tactics is a 

one off investment. Once provided, we can keep using them to automate various testing tasks. 

1.4 ONLINE GOAL SOLVING WITH CONSTRAINED OBSERVABILITY 

In Section 1.3 we have observed that basic goals can be treated as high level transitions. The 

corollary of this is that solving a goal 𝜑 can be seen as a problem of finding a sequence of high 

level transitions that leads to a state satisfying that goal. In Section 1.3 we require the 

developer/tester to provide the solution. We will now discuss high level solvers that can search 

for such a sequence of high level transitions, so that the developer no longer needs to manually 

provide it.  

 

We can notice that the basic tactics given as examples in Section 1.3 are parameterized by a 

target object; essentially they specify what the agent can do with the object, e.g. to travel to it, or 

to interact with it. The state of iv4xr agent contains information about objects it most recently 

observes. If the observation is unlimited (which is usually not the case), the agent can observe all 

objects in the SUT’s virtual world. Else, only some limited objects can be observed, given the 

agent's current location. When the observability is constrained, the agent’s state also stores 

information about objects it observed in the past (the mechanism is explained in more details in 

Report D2.4). Given knowledge about what objects are known to it, the agent would then also 

know which high level transitions are available at its current state. So it then can autonomously 

try different high level transitions in order to try to solve a goal.  

  

Just randomly trying different transitions is of course not very productive. Also keep in mind that 

online execution is much more expensive than offline execution. A more systematic algorithm is 

shown in Figure 1.5. 

 

The algorithm SA1 [Shi+21] takes a goal of the form 𝜑f where f is an object. It is a predicate that 

checks the state of the object f. E.g., if f is a door, 𝜑 might be checking if the door is open. It 
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iterates over objects o currently available in the agent’s knowledge and reachable from the agent’s 

current state. It would then travel to such an o and interact with it, and then check the state of f 

again if it now solves the goal 𝜑. Each candidate will only be tried once, and a heuristic can be 

given, e.g., to try a candidate that is closest to the agent first, or closest to f first. The algorithm 

also incorporates exploration if no untried candidate can be found in the current state. 

 

Algorithm SA1.solve(𝜑f): 

visited = ∅ 

while true 

     if runs out budget then return fail // the goal is failed 

     do closeBy(f) 

     S ← the agent current state 

     if 𝜑f(S) then return success // the goal is solved 

     repeat 

        U = {e | e is an object known in S} / visited 

        if U == ∅ then 

            if there is still unexplored and reachable terrain then do explore() 

            else return fail 

     until U ≠ ∅ 

     take an e from U, e.g., the closest to the agent 

     do SEQ(closeBy(e), interacted(e)) 

     visited = visited + {e} 

        

Figure 1.5: the online search algorithm SA1. The algorithm takes a goal of the form 𝜑f where f is 

an object. It is a predicate that checks the state of the object f. E.g., if f is a door, 𝜑 might be 

checking if the door is open. The algorithm is formulated imperatively in the usual algorithmic-

style. In the implementation it produces a goal-structure and hence can be combined with other 

goal-structures. 

 

SA1 can only solve a goal that can be solved with a single high level transition; the algorithm 

essentially tries to find this solving transition. So, it will not be able to fully solve the door d3 testing 

task from Section 1.3, but it can solve its fragments. With SA1 the testing task can now be 

formulated as follows: 

 

SEQ(SA1.solver(d1 is open), 

         SA1.solver(d2 is open), closeBy(b4), interacted(b4), 

         closeBy(d3), 

         assertTrue(..., check that d3 is open) 

 

Notice that now it is shorter than the original formulation in Section 1.3. 

 

A more advanced version of SA1, let’s call it SA2, has been developed and studied [Shi+22]. It 

will be able to solve certain goals whose solutions require a sequence (of high level transitions) 
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of length >1. In Figure 1.6 some results on the performance of SA2 on various levels4 in the Lab 

Recruits game. The first eight levels are taken from the ATEST 2021 Testing Competition 

benchmark5. These are small to medium sized levels of 150 - 600 m2. The last two are levels 

simulating two actual levels from an MMORPG game called Dungeon and Dragons online (DDO)6. 

The original DDO levels are called Durk’s Got a Secret and Return to the Sanctuary, which we 

simulate in Lab Recruits. Figure 1.7 shows the original layout of the DDO Durk level, alongside 

its simulated layout in Lab Recruits. These are large levels (Durk is 1600 m2 and Sanctuary is  

3400 m2).  

 

For each of these levels a non-trivial goal is chosen and given to the SA2. It manages to solve all 

of them. The time needed to solve is given in the table in Figure 1.6. DDO levels took more time 

to solve, because they are bigger. The column “tried doors” indicated the number of intermediate 

doors that the agent tried in order to solve the given SA2-goal (the main goal). Note that at the 

beginning the agent does not know how many doors there are in the level. It starts with almost 

zero knowledge, with just some approximate location of where the goal could be, as knowledge. 

 

 
 

Figure 1.6: Results of goal solving with SA2 on various Lab Recruits levels. On all these levels 

SA2 manages to solve the chosen goal. “Time” is the time needed to solve the goal. “Exploration” 

is the time spent on exploring the level. As in SA1, exploration is a key part of the algorithm when 

the current state offers no further candidate to try. 

 
4 In gaming jargon, a “level” refers to an instance of the same game, but played in a different world. The game 

mechanics stay the same, but a level would have its own unique world layout, objects, and logic between these 
objects.  
5 https://a-test.org/a-test-2021/  
6 https://www.ddo.com/home  

https://a-test.org/a-test-2021/
https://www.ddo.com/home
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Figure 1.7: on the left is the layout of the actual DDO Durk level. The picture has been annotated: 

yellow stripes/lines are doors (closed at the beginning). There are levers next to most of these 

doors that would open the door close to it; they are not marked in the picture. Blue circles mark 

key levers that would open important doors. Red are fake doors that cannot be opened. To the 

right we see the layout of the simulation of Durk in Lab Recruits. Fake doors are bad for SA2. If it 

tries to open one, because it speculates that there might be something useful it can use behind 

that door, this would trigger an inner loop of trying out various switches only to conclude at the 

end that it is better to forget the door and try another one. 

 

It is actually quite surprising that all these levels are solvable by SA2 (by this we mean goals 

similar to opening a door are solvable, for any door in these levels). There are conditions tied to 

SA2-solvability. We expect that most levels intended to be playable by a single human player 

should be SA2-solvable, but not all. For example, the goal to open d3 in the testing task from 

Section 1.3 is actually not SA2-solvable. Some of the conditions that determine SA2 solvability 

are also difficult to understand, as they are delicately related to the geometry of the level/world 

and the agent’s visibility constraint. SA2 is currently still under further study, to gain better 

understanding of its solvability conditions and to also improve its performance (e.g. employing 

multiple agents might greatly improve its performance). 
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A working prototype of SA2 exists along with experiment results. Its integration into the iv4xr 

Framework is postponed to wait for further results, but it is planned for the first quarter of 2023. 

 

2. REINFORCEMENT LEARNING FTA 

2.1. INTRODUCTION 

Reinforcement Learning (RL) is one of the main machine learning paradigms alongside 

supervised learning and unsupervised learning. RL focuses on learning the best course of actions 

(adaptive strategy) on an intelligent agent by exploiting its interaction data within a dynamic 

environment. Contrary to supervised learning which relies on labeled datasets, the RL training 

operates on the agent-environment loop (see Figure 2.1) where the action of the agent can alter 

the state of the environment. RL is researched in many domains such as games (board games, 

video games), robotics, telecommunications, etc. 

 

Figure 2.1: The reinforcement learning interaction loop 

Reinforcement learning can therefore be used to interact with an XR system, learn gradually from 

this interaction, and ultimately be able to solve tasks related to that XR system. Here, we are 

especially interested in testing the functions of XR systems. RL based approaches have the 

potential to significantly improve automated testing as they have the capability of learning directly 

by interacting with the dynamic and uncertain XR system environments without the explicit need 

of modeling it.  

We investigate two ways to implement RL for Functional testing: 

1. Reinforcement Learning based Testing (RLbT) - RL solutions for automated testing and 

providing functional coverage of XR systems. 

2. The RL agent is an opponent to the system and tries to adaptively find weaknesses in the 

system under test. The Quality-Diversity Reinforcement Learning (QDRL) techniques 

described below find multiple and diverse weaknesses at once. 
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2.2. REINFORCEMENT LEARNING BASED TESTING (RLBT) 

This section describes the use of RL solutions for automated testing and providing functional 

coverage of XR systems. The use of RL solutions in automated testing of complex XR systems 

is challenging as it involves a vast amount of critical thinking, problem-solving, and path planning. 

In particular, in XR systems, the imperfect information of the agent due to its partial visibility of 

the environment, the large state-action space due to the long time span of the system, and 

delayed or sparse reward assignment pose challenges to effective RL solutions. To address these 

issues, careful attention is needed to represent states and actions and to define effective reward 

mechanisms in the environment. 

To this end, we have used a curiosity driven reinforcement learning approach where we remain 

at a higher level of abstraction when defining the states and actions of the reinforcement learning 

environment and with a curiosity-based reward scheme that has the ability to become a powerful 

exploration mechanism to facilitate the discovery of solutions for complex, sparse or long-time 

span tasks. Specifically, the scheme is beneficial in this context where we aim to maximize the 

functional coverage. This tactic of using curiosity is more generic as it can be applied to diverse 

environments. This reward mechanism enables the reinforcement learning agent to explore the 

space of interactions in the game. It encourages the discovery of previously unseen states and 

discourages immobility and revisiting of already seen states. 

Empirical evaluation is carried out by applying RLbT on a 3D maze-puzzle game called Lab 

Recruits. Details about the experiments are presented in [FRK+22]. To assess the feasibility and 

effectiveness of reinforcement learning solutions in automated game testing and coverage, we 

compare the proposed curiosity-based RL solution with two alternative baseline solutions. First is 

sparse-reward RL, a classic RL approach with only intrinsic sparse reward, where an agent 

receives positive feedback only when it reaches its goal, otherwise nothing. The second baseline 

approach is the pure random solution, where the agent takes decisions randomly. 

We carried out our experiments on five levels of Lab Recruits with different characteristics that 

allow us to get insight into the applicability of RL in automated testing. Figure 2.2 shows two 

among those levels, Figure 2.2(a) presents a level containing 32 buttons and 16 doors distributed 

across 8 rooms. The layout of the level is in such a way that the agent can fairly easily spot the 

buttons and eventually observe their effects (i.e., doors that open/close) as well. Figure 2.2(b) 

presents a randomly generated level where the number of entities is comparable to 8-room (19 

buttons and 14 doors distributed across 14 rooms connected by long corridors) but the physical 

space covered by the level is significantly larger. This means that the agent needs to travel a long 

distance to get from one entity to another. This level poses a different type of difficulty to 

reinforcement learning also because observing the effect of an action (e.g., a button pressed) is 

difficult as the corresponding door that is opened/closed may not be immediately visible as it 

resides in a different room across a long maze of corridors.  
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Figure 2.2: (a) 8-room level (b) LargeMaze_1 level of Lab Recruits 

Several parameters control different aspects of RLbT. Some of the parameters are related to 

reinforcement learning, and some are related to the SUT and the test agent used to interact with 

it. Based on our preliminary experiments, we selected parameter values that represent a 

reasonable tradeoff between effectiveness and efficiency without much loss in the generalizability 

of RLbT.  

In our experiments, we first discuss the results related to the goal oriented exploration followed 

by the coverage oriented exploration. With goal oriented exploration, the aim is to test the game-

play, that is to learn the best way to achieve the specified goal in the game. For the levels of Lab 

Recruits we used in our study, this translates to activating a sequence of buttons that open various 

doors until the specified target goal is reached, in our case a specific door is opened. Our 

experiments on various levels of Lab Recruits shows that the agent is able to effectively learn the 

optimal sequence of actions needed to achieve the goal. 

In measuring the functional coverage achieved by the RL agent, we concentrate on identifying 

the following coverage metrics important for the Lab Recruits game and the approach to measure 

the quantitative value of coverage achieved by our explorative agent. 

● Entity coverage - percentage of observed/interacted entities (with all possible properties) 

in a level of Lab Recruits. For example, the level of Lab Recruits (as shown in Figure 1.4) 

features fourteen properties of seven entities (i.e., three doors and four buttons). A door 

can be observed in two statuses, thus having two properties Open and Closed. A button 

can be observed in two statuses, thus having two properties: pressed or not-pressed.  

● Entity Connection Coverage- In a level of Lab Recruits, doors are usually connected with 

buttons. This metric measures the ratio of connection satisfies in a level. Measuring the 

quantitative value of Entity Connection Coverage is difficult due to the partial observability 

issue of the agent. We follow a probabilistic approach to measure this metric.  

Figure 2.3(a) and 2.3(b) show the per episode entity coverage achieved during the training phase 

for 8-room and LargeMaze_1 level. It is noticed that curiosity-based RL shows good coverage 

results in a small and straightforward level like 8-room, while it shows significant improvement in 

achieving entity coverage compared to sparse-reward RL and random solution in LargeMaze_1 

level. 
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 Figure 2.3: Entity Coverage per episode  (a) 8-room level (b) LargeMaze_1 level of Lab Recruits 

We have run a test game-play session to measure the quantitative value of coverage. The result 

is compared only between two RL solutions as the test session is guided by the respective learned 

policy. Our goal is to observe the coverage ratio obtained by both RL solutions with a limited 

budget. Coverage results obtained from our experiments are presented in Table 2.1. It is noticed 

that for a simple and small level like buttonDoors both curiosity-based and sparse-reward RL 

achieve high/full coverage. While curiosity-based has shown high potential to obtain better 

coverage ratio in a large and complex level like LargeMaze_1. Though both RL solutions obtain 

low coverage for LargeMaze_2 level, this may be because the learning duration was not enough 

to acquire an optimal Q-table.  

Environment  
Level 

 Curiosity RL  Sparse Reward RL 

Entity Cov Connection Cov Entity Cov Connection Cov 

buttonDoors 100% 100% 100% 100% 

4-room 100%  80% 60% 50% 

8-room  92% 60% 80% 54% 

LargeMaze_1  80% 50% 40% 37% 

LargeMaze_2  55% 30% 40% 20% 

Table 2.1: Coverage measure of difference levels of Lab Recruits game  

RLbT can be run in multi-agent mode where it deploys the Multi-Agent Reinforcement Learning 

(MARL) architecture. MARL architecture consists of a group of autonomous, interacting agents 

sharing a common XR environment to achieve common or conflicting goals.  

In MARL, the agents are autonomous entities with individual goals and independent decision-

making capabilities, but they are influenced by each other’s decisions as they apply reinforcement 
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learning in a shared environment. This makes the learning of an optimal policy inherently difficult 

in MARL. Despite the added learning complexity, a real need for multi-agent systems exists. 

Particularly, for complex, physically large and inherently decentralized XR systems where a single 

agent learning approach is not effective. 

In multi-agent mode, RLbT deploys two agents that work in a collaborative manner in a shared 

XR environment with the goal of maximizing coverage. The agents follow two behavior profiles: 

active and passive. An active agent is guided by a curiosity-driven reward mechanism to explore 

the system and produce a set of actions that cover the various elements in the system as well as 

functional aspects such as the connection between doors and buttons, for example. To help the 

active agent, RLbT deploys another passive agent that is responsible for scouting the 

environment and reporting its observations to the active agent. This enables the active agent to 

be aware of the effects of its actions in an efficient way, especially in systems where the 

environment is large and complex. For instance, in Lab Recruits where a button in one room could 

open a door in another room, the fact that there is a second agent, possibly far from the active 

agent, allows us to observe changes to the environment triggered by the actions of the active 

agent. The agents communicate and propagate information among themselves through sharing 

their observations. 

The RLbT multi-agent approach is currently applied on Lab Recruits, exploiting its multiplayer 

feature. However, it could be applied to similar systems that support multiple players. We carried 

out our experiments on two levels of Lab Recruits: (a) a large level as shown in Figure 2.2(b), 

and (b) an extreme level where the entities (buttons and doors) are around 5 times higher in 

quantity than the large level and are distributed over a large physical space. The performance of 

the multi-agent architecture is compared with that of the single agent. Figure 2.4 and Figure 2.5 

shows the global coverage and the per episode coverage achieved for large and extreme levels. 

It is noticed that use of multi-agent features increases the global coverage for both levels, but it 

becomes beneficial as the level complexity increases. 

 

Figure 2.4: Performance comparison for Multi-agent vs single agent RL on LargeMaze_1 level of 

Lab Recruits (a) Global coverage (b) Entity coverage per episode 
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Figure 2.5: Performance comparison for Multi-agent vs single agent RL on Extreme level of Lab 

Recruits (a) Global coverage (b) Entity coverage per episode 

2.3. QUALITY-DIVERSITY RL (THALES MAEV) 

This section tells how we use RL in order to find intrusion scenarios in a powerplant guarded by 

a moving patrol as illustrated in Figure 2.6. The agent needs to infiltrate the powerplant without 

being detected by the guards or the fixed camera. In this scenario we want to find multiple 

intruding strategies in order to find all the weaknesses of the guarding patrol. 

                                
Figure 2.6: This image shows a simulation of the powerplant environment where the buildings are in 

blue, the camera and moving guards in red and the intruder is the blue trace in the top left (along with its 

path plan). 

 

QD-RL is bringing the QD approaches to RL. Quality-Diversity is an approach to solving a problem 

that maintains a population of candidate solutions and that does not uniquely aim at improving 

their quality but instead will balance between looking for improved performance (quality) and 

increasing the diversity of the population of solutions (diversity).  
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This approach can help explore more diverse types of solutions and avoid that the learning 

process focuses too much on a type of solution that will not ultimately be optimal (avoiding falling 

in local minima). Also if the final requirement is to output all  the solutions of the problem (or as 

much as possible), this approach is likely to output a lot of them. 

 

In order to achieve this, QD-RL maintains a population of candidate solutions, called an archive, 

and enforces during the learning process that some of the solutions grow apart to favor originality. 

Therefore, designing and quantifying originality is an important component of the process. 

 

To quantify originality one can distinguish two main approaches. The first one parametrizes the 

space of policies, partitions it, and registers the best policies for each cell of the partition. The 

second one defines the originality of a solution in a more relative way, relative to the other 

solutions in the population by computing a distance between policies. In our implementation we 

followed the latter as defined in [TP+22]. 

 

QDRL is a meta algorithm. It is based on a base RL algorithm, in our case TD3, that is able to 

solve the base problem but can only output one solution. QDRL works through iteration, maintains 

a population of strategies and creates new ones at each iteration of the algorithm. To create new 

strategies, QDRL selects among the old ones several that are on the pareto frontier of quality and 

diversity criteria. Half of them are improved with respect to performance criterion (using TD3) and 

the other half is improved according to diversity criterion (using also TD3 as the diversity is 

formulated as a reward and falls directly in the RL framework). 

 

We implemented QDRL on a series of maze problems, whose complexity increases, leading up 

to the powerplant problem. Playing with simpler mazes allows us to tune our algorithm and 

discover its limits. 

 

 
Figure 2.7: This shows the execution of several RL agents that successfully introduce the guarded maze 

with two guards using diverse strategies from the same starting point. Left: The RL agents start from the 

same corner and aim at the center of the maze (green circle). Right: The RL agents are getting closer to 

the target using different strategies to defeat the guards. 

 

We evaluate the run of QDRL by looking at different metrics: how does the performance of the 

strategies in the archive evolve? How does the diversity of the archive evolve? In order to quantify 
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both diversity and quality at the same time we also look at the QD score which is the sum of 

performance of all the population in the archive. 

 

 
Figure 2.8: The evolution of the performance of the RL agents in the archive (left) and the evolution of the 

diversity in the archive (right) versus the iterations of the QDRL algorithm. 

 

 
Figure 2.9: The evolution of the number of successful RL agents in the archive (left) and the evolution of 

the qd-score in the archive (right) versus the iterations of the QDRL algorithm. 

 

Figure 2.8 (left) shows that the performance of the archive grows through iterations. This is 

consistent with the growth of the number of successful RL agents in Figure 2.9 (left) and the 

growth of the QD-score in Figure 2.9 (right). In Figure 2.8 (right) we see that diversity starts low 

but very fast grows to a high level that is maintained throughout the experience. 

 

Finally, to quantify the diversity of our agents we can display how these agents acquire an 

important coverage of the fields of intrusions. 
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Figure 2.10: The evolution of the coverage of successful RL agents in the archive over the field of the maze 

versus the iterations of the QDRL algorithm. 

 

We see in Figure 2.10 that the QDRL algorithm is able to slowly increase its coverage until it 

achieves almost full coverage of all possible paths. 

 

Finally, we tested QDRL in the complete scenario that is the power plant scenario illustrated in 

Figure 2.6. Our implementation of the QDRL algorithm fails to find successful RL agents in the 

power plant scenario. As explained above QDRL is a meta algorithm that trains a population of 

agents with the use of the RL algorithm TD3. We experimented with TD3 alone in the powerplant 

scenario, optimizing only for performance and being able to return only one solution. After one 

week of training, TD3 is able to output an RL agent with 90% intrusion success.  

 

Replicating the QDRL training process over an archive of at least 20 agents requires a long 

learning time. For this reason, future work requires us to implement a parallel version of the QDRL 

algorithm spread over multiple processors. 

3. SCRIPTLESS EXPLORATORY FTA 

3.1. INTRODUCTION 

Exploratory FTAs do not follow specific instructions such as a set of tactics and goals or crafted 

models to interact with the XR System Under Test (SUT) and to test specific paths of XR 

interactions. The objective is based on the execution of non-sequential actions to test that the 

SUT and its functional aspects are robust enough to respond to different user interactions. 

 

The automated testing approach of exploratory FTAs in the iv4XR framework is based on 

integrating the open-source TESTAR tool. This tool existed before the creation of the iv4XR project 

and emerged as a result of the European project FITTEST7. The underlying principle of TESTAR 

follows the scriptless approach to test Graphical User Interface (GUI) systems: generate test 

 
7 https://cordis.europa.eu/project/id/257574  

https://cordis.europa.eu/project/id/257574
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sequences of (state-actions)-pairs by connecting to the SUT to obtain the State and continuously 

executing exploratory actions to bring the SUT to another State while applying Oracles to detect 

failures (see Figure 3.1). 

 
Figure 3.1: TESTAR scriptless approach for GUI systems. 

 

An overview paper that describes the TESTAR capabilities to test GUI systems was published in 

the STVR journal in 2021 [TV+21]. Although the integration and use of TESTAR for XR systems 

were not described, we did acknowledge the iv4XR project in the paper (together with many other 

projects and people). That is because several revisions of the paper have been made during the 

iv4XR project execution. In the next sections, we describe how the TESTAR tool has been 

extended to act as an exploratory FTA within the iv4XR project. 

3.2. TESTAR IV4XR EXTENSION 

The TESTAR tool is modular software that allows the integration of multiple software frameworks, 

plugins or APIs extensions to adapt the concepts of State, Actions, and Oracles to test different 

types of systems by using the scriptless approach. While the core package of TESTAR is fitted 

with the concept of exploratory FTA, a series of technical extensions were incorporated into the 

tool to integrate it as an agent within the iv4XR framework. 

 

1. TESTAR uses the concept of Tags to set and get generic variables <T> to the Taggable 

classes that represent the SUT, State, Widget, and Action objects. These Tags that consist of 

pairs of <name, value> properties are defined in specific API-Tags classes (e.g., UIATags, 

WebTags, AndroidTags, etc.) and customize specific systems properties (e.g., WebTagName, 

WebCssClasses, UIAControlType, AndroidResourceId, etc.) that are used to indicate 

TESTAR which actions derive or which oracles apply. 
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To extend TESTAR within the iv4XR framework, a new IV4XRtags class was added to the tool. 

To fetch the state of XR systems iteratively and to execute interactions, Environment, and 

Controller Tags were added to the classes representing the SUT objects. To allow TESTAR 

to map the entities' properties that come from XR systems in order to derive actions and apply 

oracles, multiple Tags that represent the Position, Orientation, Size, or Integrity of the 

XR entities or the Health and Energy of the XR agent were added to the classes that represent 

the State and Widget objects. 

 

In Example T1, TESTAR uses the SE-plugin controller presented in Deliverable 5.4 with the 

name iv4xrSpaceEngineers in the SUT object class to obtain the Character interface that 

allows FTAs to execute actions such as using Space Engineers (SE) tools. Then, in Example T2, 

TESTAR uses the seFunctional property to determine whether a navigate and interact action 

must be derived for each widget block observed in the SE state. 

 

SpaceEngineers seController = SUT.get(IV4XRtags.iv4xrSpaceEngineers); 
Character seCharacter = seController.getCharacter(); 
seCharacter.beginUsingTool(); 

Example T1: Usage of Tags to obtain the SE controller and execute a SE tool action. 

 

for(Widget widget : state) { 
 if(widget.get(IV4XRtags.seFunctional)) { 
  seActionNavigateInteract(w); 
 } 
} 

Example T2: Usage of Tags to derive navigate and interact actions for functional SE blocks. 

 

2. The State of TESTAR, which represents which virtual entities are observable in a specific 

range, consists of a hierarchical set of widgets with properties known as widget-tree. To obtain 

the state of XR systems, TESTAR realizes an observation of the SUT using the iv4XR framework, 

which allows the tool to obtain the World Object Model (WOM) information (see Figure 3.2). 
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Figure 3.2: TESTAR observed State from Space Engineers system. 

 

This implementation to fetch the WOM information through the iv4XR framework and create the 

state is implemented by creating a new iv4XR module which extends the core module of TESTAR 

(see Figure 3.3). LabRecruitsProcess and SpaceEngineersProcess are the new classes 

that contain the functionality to launch the XR SUT and desired scenario, together with the 

initialization of the XR environment and controller, which allows TESTAR to communicate with 

the XR system. When the SUT starts, and after each action execution, TESTAR uses the classes 

LabStateFetcher or SeStateFetcher to use the attached environment and controller 

IV4XRtags to realize the observations that allow the tool to obtain the WOM information and 

create the TESTAR State. 

 

3. In order to interact with the virtual entities that are represented as widgets in the state, TESTAR 

needs to derive different types of Actions for the different types of interactive entities (see 

Figure 3.4). The new TESTAR iv4XR module contains two new main types of actions: basic 

action commands and compound action goals. A basic action command is the most basic event 

that TESTAR can execute using the iv4XR framework, e.g., move or rotate one step, equip or use 

a tool. However, due to the essence and complexity of XR systems, most of the time, it is 

necessary to execute a compound action goal that allows the exploratory FTA to navigate, aim 

and interact with an entity using an SUT tool. 

 

Compound actions goal contains an additional TestAgent taggable object to allow TESTAR to 

execute tactics from the goal-solving agents as actions. This helps to reduce integration effort if 

the SUT is ready to run with this other type of FTA. 
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Figure 3.3: TESTAR iv4XR state module. 

 

 
Figure 3.4: TESTAR iv4XR action module. 
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4. The core module of TESTAR integrates generic Oracles intended to verify the robustness of 

the SUT to detect if the system process has crashed or hung. Within the context of iv4XR, the 

TESTAR tool has been adapted to check for suspicious messages in the entities that are part of 

the game, as well as their terminals and panels, and to analyze for the exception messages in 

external SUT logs, as in the case of SE. 

 

Although verifying the robustness of the SUT gives effective results when testing GUI systems, 

for XR systems, it is of great importance to test the functional aspects of the virtual entities. We 

extended the tool with new oracles to make the exploratory FTA capable of detecting functional 

failures for XR systems. 

 

In the SE environment, it is essential to verify that the integrity of all type of block increase or 

decrease correctly after interacting with different tools, that the agent health, oxygen, hydrogen, 

and energy is restored when interacting with medical rooms or cockpits, that the jetpack and the 

dampeners are not switched without player activation, or that it is possible to construct new blocks 

if the player has the materials (see Figure 3.5). 

 

 
Figure 3.5: TESTAR oracles to test the functional robustness of the SE environment. 

 

5. TESTAR can infer a State Model while in a state s, it selects and executes an action a and 

obtains a new state s’. The transitions (s → a → s‘) are then stored in the model until the tool 

stops the exploratory process. Extending the model to use the new IV4XRtags, iv4XR State, 

and iv4XR Action allows TESTAR to infer a state model while exploring XR systems. 

 

This model can be beneficial for the stakeholders to visualize the model transitions, query the 

model and create offline oracles, or apply more intelligent action selection decisions as 

Reinforcement Learning (RL) strategies by remembering what states were discovered and which 

actions were executed. However, the TESTAR state model was originally designed for traditional 

GUI systems, on which the states contain all the available widgets to interact with. 
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In XR systems, the agents have the possibility of navigating around the virtual environment in 

order to reach the interactive entities. Because the entities that the agent observes are determined 

by an observation range, the position of the agent, and potential blocking elements, the 

exploratory FTA TESTAR needs to explore the navigable areas of the XR environments while 

storing the position of the entities to learn which of them are reachable (see Figure 3.6). 

 
Figure 3.6: Navigable State/Space of the LabRecruits system. 

 

For this reason, the TESTAR state model was extended with the concept of NavigableState 

(see Figure 3.7). The objective of this new NavigableState is to allow TESTAR to explore the 

navigable positions of the environment as it saves the information of which entities are reachable, 

then executes interactive actions defined as NavigableAction (e.g., open a door by interacting 

with a button), to continue with a new exploration of the available state positions. 

 
Figure 3.7: TESTAR iv4XR navigable state module. 

 

6. The default Action Selection Algorithm of TESTAR makes stochastic decisions to 

explore the SUT. The extension of the State Model allows this FTA to remember which XR 

positions were explored and which XR entities interacted to prioritize the selection of Unvisited 
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Actions trying to expand the exploration coverage in terms of exploring different areas and 

interacting with different entities. Although this approach helps to interact with as many different 

entities as possible, there is no learning phase to consider other possible entity features, such as 

entities that provoke changes in the environment or in the agent itself (e.g., realizing an 

exploration that learns which interactions modifies the agent fuel to take a posterior decision to 

test the functional jetpack feature). 

 

We have developed a new RL framework in TESTAR that allows attaching additional RLTags 

in the State and Action objects of the State Model to automatically calculate and assign 

reward values and learn from the previously executed transitions. This framework does not follow 

a specific RL strategy. Instead, it allows stakeholders to implement their Policy, Reward, and 

QFunction strategies to adapt the learning phase for different types of SUTs (see Figure 3.8). 

 

 
Figure 3.8: TESTAR new Reinforcement Learning framework. 

 

7. The State Model inference benefits the exploration process of TESTAR by prioritizing the 

selection of Unvisited Actions. However, for large XR environments, inferring a model 

requires a long execution time. In order to speed up the exploratory process, we have developed 

a Distributed approach. 

 

Multiple TESTAR instances can now connect to a centralized state model to share the knowledge 

of the observed environment. This is possible due to the usage of the same abstraction 

mechanism used in TESTAR to identify states and actions using the widget properties. A new 

Action Selection Mechanism (ASM) allows all TESTAR instances to coordinate their action 

selection by marking the target actions they pretend to execute.  
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Figure 3.9 represents how three different instances coordinate to select actions that were 

discovered but not yet executed. While Instance 1 can mark the closest red-action to execute, 

Instances 2 and 3 need to coordinate in the action selection because they are both in the same 

state. Instance 3 first marked the orange-action to execute, then Instance 2 read this mark 

information in the central model and decided to mark the blue-action that exists one state away. 

 

 
Figure 3.9: TESTAR distributed state model inference approach. 

3.3. TESTAR OUTPUT FILES 

As the exploratory agent TESTAR observes, navigates, and interacts with the XR entities, it can 

create four different types of output files (see Figure 3.10) that stakeholders can use to analyze 

the testing process and to obtain detailed information about potential detected failures. 

 

1. HTML report: In each action iteration, TESTAR creates this action-by-action report with 

visual and textual information. It uses the Windows API to obtain a screenshot of each 

observed state and the information obtained through the iv4XR framework that indicates 

the existing interactive entities in those states. 

 

2. State Model: As we have mentioned, TESTAR infers a State Model while exploring the 

XR system. The tool also offers an Analysis mode that launches a web service that allows 

visualizing the states and actions of the model. 

 

3. Spatial Map: In some XR systems, such as LabRecruits or SE, the information of the 

level representing the environment on which the FTA will realize the exploration is stored 

in a local file that indicates the size and the existing elements. For these cases, it is 

possible to obtain Spatial Coverage metrics and create a visual map indicating which 

space was covered by TESTAR and which entities were observed and interacted with. 

Deliverable 5.4 contains a use case example of spatial coverage metrics with SE. 
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4. Code Coverage: It is possible to integrate the usage of code coverage software in 

TESTAR to obtain lines and branch coverage metrics that indicate which internal code 

functions were executed during the TESTAR exploration. For example, for SE, TESTAR 

can automatically download and execute the OpenCover8 software to obtain these 

metrics. 

 

 
Figure 3.10: TESTAR output files created during the testing exploration. 

3.4. REFERENCES FOR DOCUMENTATION, VIDEOS AND PAPERS 

The wiki section of the TESTAR_iv4xr GitHub repository contains technical details regarding the 

architecture of the TESTAR software and instructions with videos for the configuration and usage 

of the tool. 

 

- https://github.com/iv4xr-project/TESTAR_iv4xr/wiki  

 

The iv4xr-framework GitHub repository contains documentation indicating the scientific 

publications related to TESTAR and instructions about how the tool can be used as an exploratory 

FTA to test LabRecruits and Space Engineers systems. 

 

- https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/testar/TESTAR.md  

 

4. COVERAGE 

 

The functional test agents implemented in the iv4XR project support different coverage criteria. 

Coverage informs testers how much a system is exercised by a test suite.  The notions of 

functional coverage supported by the iv4XR test agents include: 

● Code coverage. Code coverage represents the portion of the SUT’s source code 

executed when a test suite is evaluated on the SUT. As all the iv4XR test agents support 

the execution on SUT, code coverage can always be collected.      

● Spatial (or area) coverage. An XR system typically includes a representation of a 3D 

space. Spatial coverage refers to the fraction of the space the testing agent can explore 

 
8 https://github.com/OpenCover/opencover  

https://github.com/iv4xr-project/TESTAR_iv4xr
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki
https://github.com/iv4xr-project/iv4xr-framework
https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/testar/TESTAR.md
https://github.com/OpenCover/opencover
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during test suite execution. TESTAR supports spatial coverage for the Space Engineers 

game (see D5.4). The goal solving agent (see Section 1) includes the notion of area 

coverage (see D3.4). 

● Model coverage. When a model of the system is defined, several notions of model 

coverage can be considered. Both TESTAR (see Section 3.2) and EvoMBT (see Section 

4.1) include a notion of model.  Instances of model coverage supported by the iv4XR test 

agents include: 

○ state coverage:  a state represents an entity in the system. To satisfy state 

coverage a test suite has to explore all the entities defined in the SUT. Both 

TESTAR and EvoMBT support state coverage; 

○ transition coverage: a transition models an action performed in the system by the 

agent. The transition coverage criterion is satisfied when all the actions in the SUT 

are executed. EvoMBT supports transition coverage; 

○ k-transition coverage extends transition coverage requiring that all the possible 

sequences of actions of length k are executed. EvoMBT supports k-transition 

coverage.   

● Quality-Diversity coverage. Quality-Diversity coverage refers to the proportion of the 

SUT interaction space exerted by the execution of a test suite. Quality-Diversity coverage 

can be seen as an instance of model coverage, where only the set of available interactions 

is considered in the model. Satisfying Quality-Diversity coverage is particularly hard in XR 

systems, as the interaction space could be huge. Section 4.2 presents an algorithm to 

tackle the problem for the Space Engineers pilot.  

4.1. EVOMBT: EVOLUTIONARY MODEL BASED TESTING 

EvoMBT combines model-based testing (MBT) with search algorithms for the automated 

generation of test cases for systems with complex and fine grained interactions such as XR 

systems.  

4.1.1 Model-based testing 

Model-based testing (MBT) is a well established field in automated testing where formal 

representations of a system under test (SUT) are used to drive the generation of tests satisfying 

various coverage criteria. In particular, when the SUT presents a high level of complexity, applying 

MBT could be beneficial as it helps reduce complexity making test generation manageable. 

Furthermore, abstraction via models allows one to focus on desired aspects of the SUT, further 

reducing complexity. In situations such as XR systems, where the environment is highly 

interactive, MBT offers an advantage from the test generation perspective as it allows to model 

and interact with only a specific aspect/scenario of the system. Eventually, additional SUT 

behaviors could be modeled and tested in an iterative manner until the desired testing goal is 

reached.  
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Figure 4.1: Model-based testing cycle. 

 

MBT test generation cycle depicted in Figure 4.1 comprises four main actions: 

1. Abstraction. The set of features of SUT that are the subject of the testing activity are 

synthesized into a proper model.  

2. Test Generation. Tests are produced from the model accordingly with a specified 

coverage criterion. Typically, the test generation phase ends when the set of generated 

tests (i.e., test suite) which satisfy the input coverage criteria. In this phase, tests are 

abstract and cannot be executed on the SUT. 

3. Concretization. Abstract tests are converted into concrete/executable tests that can be 

executed on the SUT by an autonomous agent.  

4. Execution. Concrete test cases are executed on the actual SUT. In this phase, it is 

possible to collect code coverage data as well as expose faults in the SUT. 

 

Modeling the SUT as an Extended Finite State Machine 

Different modeling approaches and languages are available depending on the nature of the SUT 

and the desired testing objective. EvoMBT uses extended finite state machines (EFSMs) as a 

modelling tool for capturing the desired behavior of the SUT. EFSMs are suitable for test 

generation of stateful applications (such as XR systems) as they provide internal variables that 

capture desired attributes and eventually use them to decide whether or not an action could be 

performed.  

EFSMs are formal models where a system is represented by a number of states in which it can 

be at a given point, and changes from one state (source) to another (target) by means of 

transitions. Such transitions are guarded by conditions that depend on the internal variables of 

the model as well as input variables. The transitions could also have effects where they update 

the values of one or more internal variables. Two transitions are sequential if the target state of 

one transition is the source state of the other transition. A path on an EFSM is a finite sequence 

of sequential transitions from the initial state. A path is feasible if, when executed on the model, 

all the transition guards are satisfied. An abstract test case is a feasible path.  
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Concrete test cases as iv4XR framework Goal Structures 

EvoMBT is integrated into iv4XR framework (see the iv4XR framework documentation9) and 

translates each transition into an iv4XR Goal Structure (see D2.4 for a detailed description of the 

framework). Concretized test cases can be then executed by the iv4XR agent as described in 

D2.4. Concretization and execution are specific for a system and EvoMBT exposes API to easily 

integrate SUT specific execution with model-based test case generation.  

4.1.2 EvoMBT software architecture 

EvoMBT implements 5 main components that are glued together via clearly defined interfaces 

and with a Main class that serves as a point of entry by exposing the various parameters of 

EvoMBT for command line as well as API access. 

● Model representation. This is a core component that provides the representation 

formalism of EFSMs and all the corresponding operations on them. 

● Test case representation. This component handles the representation of abstract test 

cases and test suites for use by the search algorithm. Test cases are feasible paths in the 

EFSM and test suites are sets of test cases. This component also provides different 

implementations of test case factories that are used for initializing the search algorithms 

with initial candidate test cases. 

● Coverage goals. This component handles the representation of the various coverage 

goals. EvoMBT provides implementations for state, transition, and k-transition. Further 

coverage goals could easily be implemented by extending existing ones or by providing 

new implementations to the generic interfaces defined in this component.  

● Test case execution. This component handles execution of abstract test cases on the 

model for the purpose of computing the corresponding fitness value, as well as the 

concretisation and execution of test cases on the SUT, whenever available. An execution 

of an abstract test case corresponds to replaying the path represented in the test case on 

the model, starting from its initial state. During execution, different observers are notified 

of different events, e.g., a transition traversed. One such observer is the coverage goal 

manager that deals with keeping track of the execution trace and calculation of fitness 

values. EvoMBT natively supports concretization for Lab Recruits and Space Engineers 

(see Section 4.1.3  below). 

● Algorithm. This component is responsible for the various algorithms used for test 

generation. EvoMBT uses the algorithms implemented in EvoSuite. Since the interfaces 

used in EvoMBT are compatible with those in EvoSuite, most of the algorithms 

implemented in EvoSuite are readily usable in EvoMBT. Whenever there are strong 

deviations in some algorithms, they can be adapted for EvoMBT accordingly. 

The EvoMBT tool is presented in [FR+22]. Instructions for running and extending EvoMBT are 

available in the EvoMBT wiki. 

 
9 https://github.com/iv4xr-project/iv4xr-framework 

https://www.evosuite.org/
https://github.com/iv4xr-project/iv4xr-mbt/wiki
https://github.com/iv4xr-project/iv4xr-framework
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4.1.3 Case Studies 

EvoMBT is generic and not bound to a specific SUT. In the context of the project, we implemented 

native support for two games: Lab Recruits and Space Engineers. 

 

Lab Recruits 

Lab Recruits10 is a 3D game developed in the context of the iv4XR project. Here, we recapitulate 

the main features relevant for MBT. Lab Recruits game levels consist of different maze-like 

scenarios involving one or more players interacting with surrounding entities and with each other. 

The game levels are created by the game designer through a customized level notation. The level 

designs are saved as comma separated value (csv) files and loaded into the game by the player. 

To describe how EvoMBT applies to Lab Recruits, we consider the level in Figure 4.2 that extends 

the level presented in Figure 1.4.  The level in Figure 4.2 includes three doors (door1, door2, 

and door3), four buttons (b1, b2, b3, and b4), and one goal flag (gf0). Doors are opened/closed 

by pressing on one or more buttons. It is however not necessary that all buttons be connected to 

doors, i.e., some buttons may not be connected to any door. In the level of Figure 4.2, b0 is not 

connected to any door, hence pressing it has no effect on the status of the doors in the level. Goal 

flags award points to the player and can be used to simulate treasures or game rewards. The 

player has to open door3 and reach goal flag gf0. To do so, the player needs to press a number 

of buttons in specific sequences. One possible sequence of actions could be to press first b1 to 

open door1, then b2 to open door3, however since b2 toggles door1 as well, the player requires 

to open door1. The player needs to pass door2 and press b3 to open door1. At this point the 

player can go to door3 and reach gf0. We can see from this example that even if the level seems 

simple, activating certain aspects of the level is non trivial, in particular from the perspective of 

automated testing. Clearly when the levels become large and complex, the difficulty increases 

accordingly. 

Figure 4.2: Lab Recruits level extension of Figure 1.7  

 

Figure 4.3 shows one possible way of modeling the Lab Recruits level in Figure 4.2. The model 

captures the essential features of the level while abstracting away from details that are not of 

 
10 https://github.com/iv4xr-project/labrecruits 

https://github.com/iv4xr-project/labrecruits
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interest to the tester, such as the precise position in the 3D world. The model focuses on checking 

the consistency of the button-door connections as well as the correct behavior of goal flags.  

In general, game entities, such as buttons, goal flags, and each side of a door, are represented 

as EFSM states. For each door, states d_p and d_m model the two sides of door d. The EFSM  

in Figure 4.3 has four button states, b0, b1, b2, and b3, six door states d1m, d1p, d2m, d2p, d3m, 

and d3p, and a goal flag state gf0.  

Figure 4.3: EFSM model for Lab Recruits level in Figure 4.2. 

 

EFSM internal variables record door status. The EFMS has a boolean variable for each door that 

is true if the door is open and false otherwise.  

As stated above, EFSM transitions represent player actions. With the abstraction of the model in 

Figure 4.3, a player can move from an entity to another, walk through a door, and toggle a button. 

Therefore, the EFSM has three types of transitions: solid edges for free travel, when the agent 

can move from one entity to the other without traversing a door; this type of transition has empty 

guard and effect. Dotted transitions model guarded movements that happen when the agent walks 

through a door; the guard checks the status of the corresponding internal variable. Dashed self 

loop transitions are for toggle actions, i.e, the agent presses the button; the effect changes the 

value of the internal variables associated with the doors connected to the pressed button. 

 

Running EvoMBT on Lab Recruits 

In this section, we will report the results of a small experiment in which EvoMBT is applied to Lab 

Recruits level. A more extensive study is presented in [FR+21]. 

To challenge the search algorithms included in EvoMBT, we consider a LabRecruits level, named 

Large, significantly larger than the one in Figure 4.2. as it includes 50 states, 194 transitions, and 

15 internal variables. We consider five different test generation strategies included in EvoMBT: 

MOSA, MONOTONIC, STEADY STATE, SPEA2, and NSGAII. As the considered generation 

strategies are inherently stochastic, we run EvoMBT on the large model 20 times for each test 

generation strategy. Each run has a time budget of 300s, namely, the test generation process 

stops after 300s if the coverage is less than 100%. Figure 4.4 summarizes the results of the 

experiments plotting the coverage over time achieved by each test generation strategy. 
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Figure 4.4: Model coverage over time for a Lab Recruits level.  

 

The experiment highlights the main features of EvoMBT when executed on a model. First of all, 

EvoMBT allows using different test generation strategies that may have different performance. In 

this experiment, MOSA strategy outperforms other methods in terms of both effectiveness, i.e. 

the final coverage achieved, and efficiency, the convergence speed. However, different models 

could give different results and EvoMBT gives the testers the flexibility to select the approach 

more suited for the actual SUT. Moreover, EvoMBT reports detailed information about execution. 

In particular, EvoMBT takes a snapshot every t seconds, where t is a user-defined parameter (10s 

in Figure 4.4), and collects different information including the number of covered goals, the 

coverage, the number of fitness evaluations, and the percentage of the feasible path. All this 

information informs the tester about the generation process and helps in refining the model 

definition.  

Finally, we concretize and execute abstract test cases generated on Lab Recruits level Large. 

EvoMBT produces a high-level report that includes the number of tests executed/passed and the 

total time required. Moreover, EvoMBT creates a detailed summary of test execution that includes 

detailed information about each executed iv4XR Goal Structure. A detailed description of EvoMBT 

is available in the wiki.  

 

 

Space Engineers 

The Space Engineers (SE) game is one of the industrial use cases of the iv4XR project. The SE 

plugin developed within the framework exposes the API used by EvoMBT. Therefore, it is possible 

to load a csv level and create the corresponding maze level into the SE environment.  

 

https://github.com/iv4xr-project/iv4xr-mbt/wiki
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Similarly to LabRecruits, a maze level consists of several rooms connected by doors, which 

supports the definition of Extended Finite State Machines (EFSM) and the automatic generation 

of test cases. A detailed description of this EvoMBT approach for Space Engineers is reported in 

D5.4. 

4.2. QUALITY-DIVERSITY OPTIMISATION FOR TESTING SPACE ENGINEERS 

In the game Space Engineers, one to the pilots of the iv4XR project, has many different types of 

blocks, which can be placed and interacted with in many different ways. The placement of blocks 

next to one another can also change their properties, which makes the task of testing the 

interactions with these blocks a complex one. One of the biggest problems is ensuring relevant 

coverage of the interaction space when the amount of blocks and their possible combinations 

makes it infeasible to test every scenario. One particular situation that is important to test is the 

interaction of multiple users with the same blocks, given the multiplayer gameplay of SE. 

 

To tackle this problem, we developed a tool that generates test cases composed of actions for 

two test agents that promotes diversity for groups of sequences of actions in a given Space 

Engineers scenario. We created simulated versions of Space Engineer's levels based on grids 

and block ids, as can be seen in Fig. 4.5. The map is always a 2D square and the blocks are 

always connected to each other. Just like the Space Engineers game, blocks can be armor blocks 

or functional blocks, depending on their id. Blocks can be “reachable” or “unreachable” depending 

on whether they have a visible side or not. Agents can only interact with reachable blocks. 

 

 
Figure 4.5: A Space Engineers game map represented as a grid. In this example, the map dimensions 

are 10x10 with 20 total blocks in it. 

 

By implementing a version of the Quality-Diversity optimisation algorithm to generate grids of 

action sequences, our tool has shown to be capable of creating grids with very good total diversity 

values, ensuring that various interactions are covered and that redundant testing is minimized. 

Actions are defined by the interaction performed (grinding, welding, or using) and what block is 

the target of the action. Actions are characterized by a code where the interaction is represented 
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by its first letter (“G”, “W” or “U”) and the target block is defined by its position coordinates of the 

square map. For example, the code “W-0,1” means applying the action “welding” to the block at 

the position “0,1”. We decided to diversify action sequences instead of standalone actions. So, 

we will be generating action sequences for each player: as there are two players, we refer to them 

as an action sequence pair. 

 

The diversity is guided by a 2D Quality-Diversity grid, whose dimensions are “Action Repetition”, 

and “Block Repetition”. Therefore, the tool generates diverse sequences of actions for the two 

agents that differ in the repetition of actions (performing the same actions repetitively or avoid 

repeating the same action) and differ in the block targeted (both agents using the same block, or 

using different ones). An example of a 5x5 grid and an example of action sequence pairs in two 

different positions can be found in Fig. 4.6. 

 
 

Figure 4.6: Action Grid Example: a 5x5 grid with examples of the pairs in positions (0,0) and (4,4). 

 

In order to evaluate the bug detection capabilities of this tool, we created a game simulator, 

accompanied by a bug generator, where the actions from the grid are performed and generate 

the expected outcomes that would be generated in the real game. Our results showed that the 

tool is capable of generating test cases that can detect a good number of single-player bugs as 

well as multiplayer bugs. The comparison of the approach versus the use of randomly chosen 

action sequence pairs is shown in Figure 4.7. 

 

 
Figure 4.7: Chart showing the results of bug detection of the action grids approach vs the use of random 

sequence pairs. 
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5. AUGMENTED REALITY 

5.1. INTRODUCTION 

Taking as a reference the Google ARCore project, capable of creating Augmented Reality 

experiences, we developed a new tool that uses this technology, and implements tests that 

evaluate properties such as the position and size of AR objects in AR environments. The core 

approach was using the Record and Playback functionalities in order to support recording AR 

sessions and run the AR tests on these recordings. 

 

The recorded AR sessions are used as inputs in the tool, which allow to establish desirable test 

environments. These represent common AR interactions that include moving the mobile phone 

camera and showing some real world objects. The tests make it possible to verify that certain 

properties of AR objects are met in the recorded environment. 

5.2. USE CASE 

To demonstrate the tool we developed a simple AR application as the System Under Test. This 

SUT is a mobile application, the game Tanky, that uses the camera input to allow users to capture 

the real environment and put virtual 3D objects on it. The application is able to analyze the real 

environment and infer the available surfaces. Based on that it defines appropriate coordinate axes 

to place the virtual 3D objects.  

 

Tanky 

Tanky is an AR application that implements a simulation of a conflict between two war tanks. This 

tank game allows the user to interact with virtual tanks and place them in the real world. With the 

mobile device, it is possible to capture the real scene of the environment and tap the screen to 

insert a tank. A 3D object with the shape of a tank is placed in the location defined by a 3D point 

(x, y, z), inferred from the context. Similarly, more tanks can be added to the environment by 

tapping the screen. This will cause each one to occupy a certain place and, persistently, retain its 

location properties throughout the AR session. 

 

 
Figure 5.1: Virtual tank in a real scenario using Tanky 
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The game is played in turns. On the first turn, tapping the screen will place a tank in the AR world; 

in the next turn, another tank will be added. The next actions of touching the screen will make the 

tanks shoot, alternating each turn. 

 

Google ARCore 

Tanky uses the features of ARCore, Google's open source platform for creating augmented reality 

experiences. Through the mobile device's camera, ARCore is able to integrate virtual elements 

with the real world. It does this by tracking the mobile device as it moves, creating its own 

perception of the real world. 

 

We used the ARCore Record and Playback functionalities to implement the testing tool. 

 

 
Figure 5.2: Record and Playback buttons in the AR application 

 

Record 

First, we recorded a set of videos that constitute a gallery of situations (e.g. test cases) to use in 

the AR application under test. The recordings are sessions stored on the mobile device containing 

specific metadata that will allow the simulation of the user interacting with the recorded session 

later, in a playback session. We recorded videos with distinct characteristics combining still, 

moving, rotating the camera device, with moving back and forth relative to a specific point, or 

circling it The set can be extended by the tester to include different testing situations in the gallery. 

 

Playback 

It is possible to navigate and open the folder containing the gallery of previously recorded videos. 

In the playback, the user is a spectator and the system will interpret the recorded physical 

environment and detect the different surfaces and the coordinate system. The environment will 

be ready for interaction after this step, e.g., 3D tanks can be placed on the surfaces detected by 

the application. 
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Figure 5.3: Gallery of recorded AR sessions 

5.3. THE TESTING PROCESS 

The components involved in the AR test process and are related to the SUT are depicted in figure 

5.4. 

 

 
Figure 5.4: Elements of the AR testing process 

Espresso framework 

The Espresso testing framework is used for the construction of the tests in a quick and effective 

way. This technology is intuitive and easy to read, and is key to supporting automated testing. 

 

To create an Espresso test it is necessary to use the AndroidJUnit4 class, declare the @Rule and 

write the @Test (see figure 5.5). 
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Figure 5.5: Use of JUnit, @Rule and @Test for the design of a test 

 

The @Rule references the main class. And inside @Test, all the code that represents the logic 

of the test is written. An example of Espresso-based code that produces a button click (on the 

Playback button) is shown in figure 5.6. 

 

 
Figure 5.6: Click to Playback button using Espresso 

 

Inputs 

For the design of specific test cases, it has been sought to use certain recorded AR sessions, 

which allow the test cases to be addressed in a more effective way. In the elaboration of the test 

cases, possible relevant behaviors of the AR technology that can be tested and are relevant have 

been analyzed. 

 

For a specific test, it will be needed to record a specific AR session. Multiple tests can use the 

same recorded video, depending on the test objectives. 

 

The test needs pre recorded videos of AR sessions, as stated before. These videos must have 

good lighting, and the colors of the environment must not be too similar to each other. This will 

make it easier to automatically detect surfaces and detectable elements in the application. 

 

Outputs 

The tester will receive the appropriate feedback if any of the conditions and assertions of a test 

are not met. The tool will present a message to the user indicating that the SUT has not passed 

the test. The letters of the text are red, with a saturation and contrast in harmony with the 

background. 
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On the contrary, if the test process has ended without any problem, the message that will be 

displayed to the user will contain the text “Test passed”. In this case, green tones are used which, 

as in the previous case, are balanced with the general color range. 

 

In addition, the system output, reflected in the Run tab, will indicate if the test has been passed. 

Otherwise, it will return an error and give information about the part of the code associated with 

it. 

 

 
Figure 5.7: Test Failed pop-up message 

 

 
Figure 5.8: Failed test result 

 

 
Figure 5.9: Test Passed pop-up message. 

 

 
Figure 5.10: Passed test result 

 

  
Figure 5.11: Final message that indicates if the test was passed or not 
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Test construction 

For the elaboration of a test, in the first place one needs to determine what needs to be tested. 

This can be a property of a 3D object that exists in the AR environment, or how a 3D object 

interacts with the environment, among others. 

 

Then, a process has been designed that represents the list of actions that the test agent will 

execute automatically in the SUT, to force a context in which the test can be done properly. This 

involves the following steps: 

 

1. Load and play a previously saved video that refers to the AR sessions selected for the 

test. This can be achieved by: 

a. Pressing the “Playback” button to access previously saved videos in the test 

gallery. 

b. Select the target video and play it. 

2. Carry out the actions on the AR session, such as placing 3D objects in the environment. 

 

After automatically performing the necessary actions on the AR session, assertions are executed 

in the test, to determine if certain rules that establish that the test has been passed successfully 

are met. A message shows the results, using green letters, informing success, or using red letters 

to indicate failure. 

 

Test execution 

To run the tool on a physical mobile device, it must first be configured to allow USB debugging. 

To do this, the user has to navigate to USB debugging (Settings > Developer options > USB 

debugging) and enable it. Then the device must be connected to the computer where the tool 

project is located. Finally, when the device is detected in Android Studio, the user must click on 

the Run button. 

 

To run an AR test, users must first load the AR test package called ar_tests. In the project 

structure, the user will see the set of tests available.  

 

 
Figure 5.12: Location of AR tests in the project 
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To run one of the tests, these steps can be followed alternatively: 

● Right click on the test > Click on Run. 

● Double click on a test to open its code > Click on the Run button, represented as a green 

triangle on the toolbar. 

● Double click on a test to open its code > Click on the Run tab > Click on Run. 

 

It is convenient to make sure that the name of the desired test appears as selected, so that it is 

the one that is executed. That can be checked on the toolbar. 

 
Figure 5.13: Selection of activity to be executed. 

 

The selected test will then be executed, automatically performing the actions specified in its code, 

as well as the corresponding checks and assertions. 

5.4. INTEGRATION WITH THE IV4XR FRAMEWORK 

Regarding the integration with the iv4XR framework, the needed libraries (e.g., aplib) were added 

to the AR testing project. Then some java classes were created to adapt the application to the 

iv4XR architecture. These classes are MyAgentEnv, GoalLib and MyAgentState. A test file will 

use these resources to establish the operation of a test designed with iv4XR features. 

 

MyAgentEnv 

MyAgentEnv creates an environment based on the AR application activity. It also contains 

methods like observe, tapScreen, clickButton and selectVideo, allowing these last three to 

perform actions in the environment. 

 

GoalLib 

This class contains methods to create goals based on the possible actions specified on 

MyAgentEnv. 

 

MyAgentState 

MyAgentState extends Iv4xrAgentState, it implements the method updateState, responsible for 

updating the state based on the anchors displayed. 

 

Test files 

Each test file contains a goal structure in which there is a sequence of goals, being these related 

to clicking the Playback button, selecting a recorded AR session and then tapping the screen to 

place AR objects. After that, there are assertions that determine whether the test passes, based 

on certain criteria. 

 

In a test, the necessary goals are grouped in a GoalStructure, which represents the sequence of 

actions that must be executed in the system automatically. An example of a GoalStructure would 
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consist of the goals related to clicking the Playback button, selecting a video from the gallery and 

touching the screen. 

 

 
Figure 5.14: Architecture of AR test system integrated with iv4XR framework 

5.5. AR TESTS 

During the development of the game, several bugs were included on purpose to simulate incorrect 

scenarios and thus validate our testing methodology. 

 

Four tests were designed and implemented to verify different properties in AR environments. They 

use Tanky as the SUT, and automatically execute actions in the environments it provides. 

 

First of all, the Surface Test focuses on ensuring individual properties of each tank. Secondly, the 

Collision Test looks for the validation of behaviors that involve more than one tank at a time. Third, 

the Depth Test aims to verify the capabilities of the application's depth system, checking the 

ARCore depth API. Finally, the Rotation Test is aimed at analyzing the state of the tanks when 

the user changes the perspective of the mobile device. We tested, additionally, if the maximum 

number of tanks that can be placed is 2. 

 

Surface test 

At the start of each game, two tanks must be placed in the environment, representing the two 

characters in the game. The tanks must appear in the place where the user has decided by 

touching the screen, and the properties with the X, Y and Z axes must be respected. In this case, 
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it will be tested that, when placing a tank, the only rotation assigned to it is related to the Y axis. 

This assures that the tank is correctly placed on the surface. 

When the tank is placed in the environment it must not have rotation in the X or Z axes, which 

would imply that it is not well positioned on the surface. If the X or Z axis rotation value is non-

zero, the tank will be oblique to the surface, which should not be correct. In that case, the test will 

fail. 

In terms of development, a GoalStructure was created in the test file that prepared the test 

scenario, as can be seen in the following image. 

 
Figure 5.15: Sequence of goals specified in an AR test 

Then, an assertion is used to check that for each tank, the value of its rotation in the X and Z axes 

is zero. If so, a Test Passed message is returned, and the assertion causes test results returned 

at the system-level to be Passed. 

 
Figure 5.16: Assertion for the surface test 

 

Collision test 

In the real world, tanks cannot occupy regions of common space. Each one is located in a place, 

and a point located in the coordinates X, Y and Z can correspond to the space occupied by a tank 

or by none; never by two tanks. 

This must be true in the application. Two virtual tanks cannot be in the same place at the same 

time. Similarly, if these tanks change position over time, they should not be able to intersect. 

To achieve this, the dimensions of the virtual tanks have been determined. These represent the 

associated hitbox. First, the virtual object file of the tank has been processed, and its lines have 

been iterated to find those that start with v and represent the vertices of the tank. In each of these 
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lines three sections can be distinguished, each of them representing a coordinate on the X, Y and 

Z axis, respectively. From this information, the maximum and minimum value relative to each axis 

has been calculated: max(X), min(X), max(Y), min(Y), max(Z), min(Z). 

 

Figure 5.17: 3D tank vertex data 

Once these values have been calculated, the length of the tank on an axis is calculated as the 

subtraction between the maximum and minimum value for that axis: 

length(X) = max(X) - min(X) 

length(Y) = max(Y) - min(Y) 

length(Z) = max(Z) - min(Z) 

The next step is to know the location of a virtual tank that has been placed in the real world. This 

information corresponds to the translation values of the virtual object: 

location(tank, X) = translation(tank, X) 

location(tank, Y) = translation(tank, Y) 

location(tank, Y) = translation(tank, Y) 

 

With the location and size of the tank its hitbox can be computed. The hitbox is centered on the 

middle of the 3D model the represented the tank: 

hitbox(tank, X) = ( location(tank, X) -  length(X)/2 ) .. ( location(tank, X) +  length(X)/2 ) 

hitbox(tank, Y) = ( location(tank, Y) -  length(Y)/2 ) .. ( location(tank, Y) +  length(Y)/2 ) 

hitbox(tank, Z) = ( location(tank, Z) -  length(Z)/2 ) .. ( location(tank, Z) +  length(Z)/2 ) 

By checking if the tanks’ hitboxes intersect we can test the occurrence of a collision. In the case 

that this is not the intended behavior, the test should fail. 
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Depth test 

ARCore's Depth API allows users to estimate depth from real-world information. The shape and 

size of the elements captured by the camera serve as support to create a depth image every time. 

These images represent areas with associated colors, with the red areas being the closest ones, 

and the blue areas being the furthest away areas.  

As it is typical in a war-fighting game, barriers and hiding spots should be used to protect the tank 

but also constitute obstacles for its movement. The obstacles/hiding locations in this case are 

real-world items, so it is required to map them and understand the distances between them and 

the camera. This supports checking the occlusion of objects in the environment (i.e, determine 

whether the tank should be positioned in front of or behind the real object). To achieve this, the 

tool must verify if the depth image generated by the application corresponds to reality. 

 

Figure 5.18: Depth image update 

First, the depth image is obtained at a given time: depthImage(time). In addition, two areas of the 

scene must be known in which, at said instant of time, they have different depths. 

Next, the color of a pixel located in the area of the depth image that should be closer is obtained, 

and also the color of another pixel in the area that should be further away: color(nearPixel), 

color(farPixel). 

Finally, through calculations, it is determined if the color of the pixels implies that the depth of the 

pixel of the far zone is greater than the depth of the pixel of the near zone. 

 

Figure 5.19: Comparison of the depth of two points 
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Rotation test 

This game is an AR application in which the map can be the entire environment through 360 

degrees. The virtual tanks position should be consistent as they must stay in the same place even 

if the mobile device's camera has turned the other way and the tank is no longer visible. If the 

mobile moves away from a virtual object, when the user returns the focus of the camera to the 

place where the virtual object was, it should continue to appear there. 

 

To analyze this behavior, a video has been provided that works as input, in which the device 

manages to rotate and leave possible virtual objects placed in the scene out of focus. 

 

At the code level, when putting a virtual tank in the real world, the TrackingState property of the 

element has been analyzed. The value of this property can be Paused, Stopped, or Tracking, 

depending on whether the Trackable is currently tracked. This gives us the information that a 

virtual object is in the scene. Next, a certain millisecond wait is performed, after which the virtual 

tank will have been left out of focus in the AR session being played.  

 

Finally, the value of this property is evaluated again, and it is verified that it is equal to the value 

obtained previously. Then it is verified that this value is Tracking, which would show us that the 

virtual object still retains its properties and continues to exist even if the camera is not pointing at 

it. 

 

 
Figure 5.20: TrackingState check.  
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