

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D3.5 – Report describing Functional Test Agents (FTAs)

iv4XR – WP3 – D3.5

Version 1.10

December 2022

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR i

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2022

Actual Date 30/12/2022

Document Author/s Tanja Vos (UPV), Fernando Pastor Ricós (UPV), Borja Davó

Gelardo (UPV), Wishnu Prasetya (UU), Fitsum Kifetew (FBK),

Davide Prandi (FBK), Raihana Ferdous (FBK), Victor Gabillon

(THA-SIX), Joseph Davidson (GA), Pedro Fernandes (INESC-

ID), Inês Carvalho (INESC-ID), Rui Prada (INESC-ID), Manuel

Lopes (INESC-ID), Jeremy Cooke (GWE)

Version 1.10

Dissemination level Public

Status Final

Type REPORT

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR ii

Document Version Control

Version Date Change Made (and if appropriate reason

for change)

Initials of

Commentator(s) or

Author(s)

1.0 20/11/2022 Initial document structure and contents FP

1.1 29/11/2022 Discuss deliverable structure
TV, WP, FK, FP, VG,

RP, PF, JC, JD, DP

1.2 5/12/2022 Add Exploratory FTA section FP

1.3 9/12/2022
Add INESC-ID quality-diversity to Coverage

section
PF

1.4 9/12/2022
Add RL section introduction and Quality-

Diversity approach
VG

1.5 13/12/2022 Add Goal Solving section WP

1.6 14/12/2022 Add Augmented Reality section BD, IC, RP

1.7 15/12/222 Add RLbT and EvoBMT sections DP, FK

1.8 19/12/2022 Update RLbT section RF

1.9 20/12/2022 Rewrite some text in the AR Testing section RP

1.10 30/12/2022 Final arrangements for submission RP

Document Quality Control

Version

QA

Date Comments (and if appropriate reason for

change)

Initials of QA Person

1.8 19/12/2022 Minor comments and edits RP

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR iii

1.9 20/12/2022 Overall revision ML

1.9 28/12/2022 English grammar, sentence structure, figures JD

Document Authors and Quality Assurance Checks

Author

Initials

Name of Author Institution

TV Tanja Vos UPV

FP Fernando Pastor UPV

BD Borja Davó UPV

WP Wishnu Prasetya UU

FK Fitsum Kifetew FBK

DP Davide Prandi FBK

RF Raihana Ferdous FBK

VG Victor Gabillon THA-SIX

JD Joseph Davidson GA

JC Jeremy Cooke GWE

RP Rui Prada INESC-ID

PF Pedro Fernandes INESC-ID

IC Inês Carvalho INESC-ID

ML Manuel Lopes INESC-ID

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR iv

TABLE OF CONTENTS

Executive Summary 1

Acronyms and Abbreviations 1

Overall concepts, architecture, design Functional Test Agents (FTAs) 2

1. Goal Solving FTA 3

1.1 Offline goal solving with no hidden transition 5

1.2 Offline goal solving on models with extended state structures 5

1.3 Online goal solving through tactics 8

1.4 Online goal solving with constrained observability 10

2. Reinforcement Learning FTA 14

2.1. Introduction 14

2.2. Reinforcement Learning Based Testing (RLbT) 15

2.3. Quality-Diversity RL (Thales MAEV) 19

3. Scriptless Exploratory FTA 22

3.1. Introduction 22

3.2. TESTAR iv4XR extension 23

3.3. TESTAR Output Files 30

3.4. References for documentation, videos and papers 31

4. Coverage 31

4.1. EvoMBT: Evolutionary Model Based Testing 32

4.1.1 Model-based testing 32

4.1.2 EvoMBT software architecture 34

4.1.3 Case Studies 35

4.2. Quality-Diversity Optimisation for Testing Space Engineers 38

5. Augmented Reality 40

5.1. Introduction 40

5.2. Use Case 40

5.3. The testing process 42

5.4. Integration with the iv4XR framework 46

5.5. AR Tests 47

FTAs Scientific Publications 52

References 54

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 1

EXECUTIVE SUMMARY

This deliverable D3.5 is a report that describes the existing Functional Test Agents (FTAs) of the

iv4XR framework and their technical approaches for testing the XR use cases. The project's

GitHub repository contains extended and updated documentation regarding the specification of

each FTAs.

The document starts with an overall description of the integration of the FTAs within the iv4xr

framework. Then it continues as follows:

1. Goal Solving agents that follow goal instructions to verify the XR functionality.

2. Reinforcement Learning agents that learn gradually from the environment to solve tasks.

3. Exploratory agents that execute non-sequential actions to verify the system’s robustness.

4. Coverage agents that use a model crafted by a domain expert to generate test cases.

5. Augmented Reality agents that follow goal instructions to verify the AR scenarios.

ACRONYMS AND ABBREVIATIONS

FTA Functional Test Agent

XR eXtended Reality

VR Virtual Reality

AR Augmented Reality

RL Reinforcement Learning

QDRL Quality-Diversity Reinforcement Learning

MBT Model Based Testing

SUT System Under Test

WOM World Object Model

GUI Graphical User Interface

SE Space Engineers

DFS Depth First Search

EFSM Extended Finite State Machine

LTL Linear Temporal Logic

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 2

OVERALL CONCEPTS, ARCHITECTURE, DESIGN FUNCTIONAL TEST AGENTS

(FTAS)

Figure 1: Different types of FTAs in iv4XR.

We distinguish between four sub-types of FTAs in WP3, of which three of them follow similar

exploratory capabilities:

● The first type of agent makes deliberations to choose the appropriate strategies that will

allow it to solve goals(Goal-solving TA circle in Figure 1).

● The second type of agent does not follow specific goal structures but learns from the

executed goal interactions to verify if it is possible to achieve a final state (RL section from

Explorative TA circle in Figure 1).

● The third type of agent explores the XR environment with a Scriptless approach while

verifying if the system is robust enough to respond to multiple and unexpected user

interactions (TESTAR section from Explorative TA circle in Figure 1).

● The fourth type of agent can follow the space of interactions that are abstractly

represented in a model to cover all the transitions (MBT section from Explorative TA circle

in Figure 1).

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 3

These FTAs are able to test the SUTs from WP5, by using the Framework-Core from WP2, as

is also shown in Figure 1.

1. GOAL SOLVING FTA

This section will present a number of goal solving algorithms available to iv4xr functional test

agents. They are used to target different classes of problems, but all are relevant for XR setups.

To allow them to be discussed in a similar way, let us first introduce a generic setup for goal

solving problems. The system under test (SUT) will be abstractly modeled as a Finite State

Machine (FSM) M=(𝛴,A,T,s0) where 𝛴 is M’s set of possible states (finite), A is a set of labels

representing names of actions, T is a set of transitions between states, and s0∈𝛴 is the initial state

(for simplicity we will assume just a single initial state). A transition is a triple (s,a,t) where s is the

origin state of the transition, t is the transition’s result state, and a is a label from A.

The states in M can be seen as abstractly representing SUT’s actual states. A possible testing

concern is, for example, to check the consistency of the actual state that is represented by some

abstract state s, presuming that the testing program is given some methods to inspect the actual

state. Note that for the same SUT, we may have multiple models, e.g. providing different

perspectives on the SUT. For example we can have a model M1 that captures the SUT’s functional

logic, and a model M2 that captures navigation between different key locations in the SUT’s virtual

world.

A test agent can be seen as a program that drives M to move from one state to another by

executing its transitions, starting from the initial state. E.g. the agent may want to visit a particular

state s in M to check the consistency of the actual state that s represents, or to check that all

outgoing transitions of s can indeed be executed.

We will also distinguish between a complete model of the SUT, and the model that the agent

knows. Imagine a model M0 that we can regard as the complete model of the SUT. By “complete”

we do not mean that it captures every aspect possible of the SUT (such a model will not be a

‘model’ anymore); but rather a model that with respect to some chosen abstraction can be

regarded as complete. It is not necessary that we actually have this M0, it is just a useful concept

to introduce. An agent can be given a partial model M, e.g. because constructing the complete

M0 takes too much work. An agent can also come with an ability to learn M0. That is, it can be

given some very limited M at the beginning, but as it interacts with the SUT it gradually extends

M.

Def.1.1: A model M1=(𝛴1,A,T1,t0) is as submodel of M2=(𝛴2,A,T2,s0) if (1) the initial states are the

same, (2) 𝛴1 ⊆ 𝛴2, and (3) any non-hidden transition of T1 is also a transition in T2.

Def.1.2: A model is said to have hidden transitions if it contains transitions of the form (s,a,?)

where “?” is a symbol to mean unknown. This means that there is a transition labeled with a

available on the state s, but it is unknown where this transition leads to.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 4

We can distinguish several testing setups:

● Full model setup: the agent is given a complete model M0. This setup is not always

possible or feasible. In some situations, M0 can be extracted automatically from the SUT.

If there is no such mechanism, then it has to be hand crafted, which can be expensive.

● Partial model setup: the agent only knows a part of M0. The knowledge can be partial in

various ways. E.g., it may know some sub-model M of M0. In a different setup, the agent

might know which transitions are available at each state, but it does not know where those

transitions would lead until it executes them (in other words, M has hidden transitions).

● Online testing setup. In this setup, transitions are executed on the actual SUT. The benefit

of this is that this allows us to check the SUT’s actual states. The drawback is that online

execution of a transition is slow. Since many combinations have to be tried, overall such

an approach is computationally expensive. If the agent already knows which sequence of

transitions it wants to do, the cost is usually acceptable. Pre-planning the transitions works

in the full model setup, but may not be possible in a partial model setup, in particular if it

has many hidden transitions. In the latter case, it may become necessary for the agent to

try out different transitions online in order to figure out how to get to a certain state. The

computation cost of this can be excessive.

● Offline testing setup. The agent executes the transitions on M without executing them on

the SUT. This still allows us to check some correctness properties, e.g. to check if a certain

predicate 𝜑 over 𝛴 is reachable. The more important benefit we get from this setup is the

ability to plan, e.g. to find a sequence of transitions that ends in some desired state, or to

find a sequence of transitions that would cover some transitions, or a pair of transitions.

Importantly, the solution is calculated offline! In the full model setup, this would allow us

to generate a test suite, consisting of sequences of transitions as test cases, that would

cover e.g. all transitions in M0, or all pairs of transitions in M0. Since offline executions do

not require executions on the SUT, offline planning is computationally cheap (fast). Once

obtained, the sequences can be executed online on the SUT to do actual testing. While

the online testing part would still incur its computation cost, the more complex calculation

to search for a covering test suite is done offline, which would save us a lot of computation

cost.

Imagine that the agent knows a model M=(𝛴,A,T,s0) of the SUT. This M is not necessarily the full

model M0. A goal is represented by a predicate 𝜑 over 𝛴. In an agent-based setup, a goal

represents states that we want the agent to be. In terms of testing, these could be states that the

agent needs to check for their consistency.

Def.1.3: A goal 𝜑 is solved from a current state s if we can find a sequence 𝜎 of transitions in T

that would bring M from the state s to a state s’ such that s’ ⊨ 𝜑 (𝜑 is true on s’). Such a 𝜎 is called

a solution of 𝜑.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 5

A goal solving algorithm is simply an algorithm for finding a solution for a given goal.

1.1 OFFLINE GOAL SOLVING WITH NO HIDDEN TRANSITION

In this setup, M may be partial, but it does not have any hidden transitions. This setup is pretty

straightforward to solve, e.g. we can just apply an offline depth first search (DFS) on M to find a

state satisfying goal 𝜑. Since there is no hidden transition, we can also solve 𝜑 completely offline.

Of course, we can then only solve 𝜑 in this way if it is solvable with the information we have on

M.

In the case that 𝜑 specifies a singleton state {t}, the problem is the same as the pathfinding

problem over a graph, namely to find a path from the current agent state s to t. For this iv4xr

provides an implementation of the A* algorithm, which is efficient and often gives a better

(shorter/shortest) path than DFS, provided a concept of distance between nodes/states is given.

A typical setup where this is used is when M is actually a navigation graph NG over a virtual world.

Every s in 𝛴 represents a visitable location in the virtual world. A transition between two states s

and t means that the agent can travel (in the virtual world) in a straight line from s to t without

encountering any obstacle (e.g. there is no tree in between that can block this travel). The distance

between them can be defined as the physical straight line distance between them. Some SUT

can produce a complete navigation graph NG0 which the agent can exploit. Else iv4xr provides a

method that can construct a navigation graph on the fly (as the agent explores the world).

List<NodeId> findPath(Navigatable NG, NodeId start, NodeId goal)

Figure 1.1: the API for invoking A* pathfinder.

1.2 OFFLINE GOAL SOLVING ON MODELS WITH EXTENDED STATE STRUCTURES

Consider now a setup where M is extended with a set V of variables. Transitions can be guarded

by a condition/predicate over V and can update the values of V as well. The domain of V (the

values that the variables can take) does not need to be finite. Such an M is also called extended

finite state machine (EFSM) [AP11]. The states in 𝛴 is then called the ‘abstract states’ of M. If full

state is a pair of (s,v) where s is an element of 𝛴 and v is a vector of the current value of the

variables in V; it is also called configuration.

Note the space of possible configurations of an EFSM can be infinite. EFSM is also Turing

complete.

Consider a more expressive formulation of the goal, namely using a Linear Temporal Logic (LTL)

[BK08] formula 𝜓. Such a formula is a predicate over infinite sequences of states, rather than

simply a state predicate. Iv4xr supports LTL. A fragment of supported syntax is shown below; a

more complete description is presented in the D2.4 report. Below, p is a state predicate as an

atom, 𝜓 is an LTL formula, and F is either a state predicate or an LTL formula.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 6

F ::= p | 𝜓

𝜓 ::= now(p)

 | next(F) -- also known as the X operator

 | always(F) -- also known as the ⛶ operator

 | eventually(F) -- also known as the ⬦operator

 | ltlAnd(𝜓0, … , 𝜓n−1) -- conjunction ∧

 | ltlNot(𝜓) -- negation ¬

The semantics of LTL formulas over infinite sequences is defined as usual [BK08]1. Traditionally

LTL is used for verification. That is, 𝜓 is used to express a correctness requirement, and we would

then want to know if all possible executions of M satisfy 𝜓. Here, we want to use 𝜓 as an

expression of goal, e.g., it might be used to encode a certain test scenario (e.g. we want to have

a run that first visit room-1 and then room-2, and so on). To simplify the discussion, we will only

consider a setup where a solution is wanted with respect to M’s initial state s0.

Def.1.4: given an LTL goal 𝜓, a solution to this goal is a “finite witness” of 𝜓.

Def.1.5: An execution of M is a sequence 𝜋 of configurations starting in M’s initial configuration,

and furthermore for any pair of consecutive configurations in 𝜋i and 𝜋i+1, there exists a transition

in M that can be executed on 𝜋i and would result in 𝜋i+1.

Def.1.6: A finite execution 𝜋 is a finite witness for an LTL formula 𝜓 if either: (1) any infinite

execution that extends it would satisfy 𝜓 as well, or (2) 𝜋 contains a suffix that is cyclic, that when

repeated indefinitely would yield an infinite execution that satisfies 𝜓.

Defined as above, a solution for 𝜓 can be obtained by applying an LTL model checking algorithm

e.g. as in [BK08], provided the space of possible configurations of M is still finite. In iv4xr, an

implementation of LTL model checking is provided2. The iv4xr LTL model checker uses a double

DFS approach similar to what is used in the SPIN model checker [Ben08]. The iv4xr LTL model

checker actually applies bounded model checking (BMC), so it will actually work on M with an

infinite space of configurations, though at the expense of losing the completeness guarantee. It

can also give the shortest solution, by applying a binary search over the depth bound.

It can be noted that the choice for LTL, rather than other modal logics such as CTL, has been

deliberate. LTL, being a sequence predicate, gives a natural concept of executable solution (to

goal solving). As defined in Def. 1.4, the solution of an LTL goal 𝜓 is a sequence of actions, which

1 LTL is also discussed in D2.4, but note in D2.4 LTL is used to check the runs of test cases. These runs are finite, so

there we need an LTL semantic over finite sequences. Here, we use LTL to specify a goal. In this setup the standard
semantic over infinite runs gives us more expressiveness while retaining the ability to solve such a goal.
2 The decision to implement our own model checker, rather than using an existing model checker, is mainly to allow

easier and deeper integration with other modules within iv4xr and retaining the option to adjust or extend the checker
as needed. As far as we know, iv4xr LTL model checker is the only LTL model checker that is implemented in Java.
There are existing LTL model checkers, such as SPIN, or LTLmin. But SPIN, for example, does not offer APIs, and is
limited to finite state space use cases, which is not necessarily our case in iv4xr. LTLmin has APIs, but is less suitable
for handling states with possibly deep structures.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 7

can be turned into a real test execution (of the action-sequence) on the SUT. Also, there is a

standard procedure to find a solution, namely through model checking as pointed out above.

Similar to SPIN, the iv4xr MC is lazy, which means that M does not have to be literally a graph-

like structure with explicit nodes and arrows. In fact, M can be implemented succinctly as a Java

program, as long as it implements a certain interface (among other things, it requires the program

to implement state cloning).

In contrast to the navigation graph mentioned in Section 1.1, typically an EFSM model is used to

also capture the functional logic of the SUT. Once we obtain a solution to a goal, we typically

would want to execute it on the real SUT (e.g. as a test case). The actions from the EFSM are

typically high level actions which may not be directly executable in the SUT. So, some adapters

may be needed to translate them to primitive actions in the SUT. In our studies we typically use

a fixed set of goal structures as our collection of possible actions (the A component). As a goal

structure is executable (through a test agent), we then have the ability to execute a solution.

Figure 1.2 below shows the main APIs of iv4xr bounded model checker (BMC). The constructor

constructs a checker from a given model M of type/interface ITargetModel. The latter means that

a “model” can be any Java program as long as it implements the methods of the interface

ITargetModel. Figure 1.3 shows key methods of ITargetModel. Importantly, getCurrentState()

needs to return the current model’s state, represented as an instance of IExplorableState. The

latter requires that model states must be cloneable.

The key methods that have to be implemented by a model are shown in Figure 1.3.

BuchiModelChecker(ITargetModel model) // constructor

Path<Pair<IExplorableState,String>> find(LTL 𝜓, int maxDepth)

Path<Pair<IExplorableState,String>> findShortest(LTL 𝜓, int maxDepth)

Figure 1.2: the main APIs for constructing and invoking iv4xr LTL bounded model checker.

interface ITargetModel :

 IExplorableState getCurrentState()

 boolean backTrackToPreviousState()

 List<ITransition> availableTransitions()

 void execute(ITransition tr) ;

interface IExplorableState :

IExplorableState clone() ;

Figure 1.3: methods that should be implemented by a model, so that it can be targeted by iv4xr

BMC.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 8

1.3 ONLINE GOAL SOLVING THROUGH TACTICS

In many setups the agent does not actually have a model to help it. A navigation graph may be

available, or can be constructed on the fly, but an EFSM that models the functional logic of the

SUT is much harder to come by. If reaching a goal state s is reachable through obstacle free

travel, then having a navigation graph is enough to solve this goal offline. But more often than

not, reaching a goal state requires that some logic in the SUT needs to be engaged. Without a

model that captures the logic, we will then have to solve such a goal in an online way. In iv4xr we

can define so-called tactics for solving goals. Essentially, a tactic is a set of guarded actions that

define a heuristic for solving a goal.

An iv4xr agent runs a loop; each iteration is called a deliberation cycle. During such a cycle the

agent observes the SUT and then decides which action towards reaching a goal that is given to

it. The interface to the SUT (the Environment component in Figure 1) should provide a set of

primitive methods for controlling the SUT; these are the basic actions the agent can do. However

a goal may require a run of many cycles to even get close to it, so choosing the right action at

every cycle is not trivial. A tactic is essentially a logical statement that controls how the agent

makes this choice.

From a goal’s perspective, a tactic is an online solver, as it drives the agent to do a whole series

of actions that eventually solves the goal. Obviously it is not possible to write a tactic that can

solve all goals. Instead, a tactic is usually written as a solver for a certain family of goals. The

concept of “goal family” can be captured by a parameterized goal. For example, let’s assume that

the goal to reach an object in the same room can be solved by a general heuristic regardless of

which specific object we try to reach. We can capture this by a goal e.g. reached(e) that is

parameterized by the specific object e that we target. This can be solved by the same tactic that

implements the heuristic, that can then solve reached(e) for any e, as long as it is located in the

same room as the agent.

It is usually easy to write tactics for solving simple goals. For a goal that is harder to solve, it is

also possible to define a goal structure; with it we can introduce e.g. a sequence of subgoals to

help the agent in solving its main goal. Such a construct is used when it is hard for the agent to

come up with the subgoals by itself, so a human gives the subgoals. However, each subgoal has

a known tactic to solve it.

More about the tactic and goal structures of iv4xr agents are explained in Report D2.4.

Let’s call a goal, which is not a goal structure, a basic goal. Such a goal has a tactic associated

with it. With a goal structure we typically refer to a composition of basic goals and other goal

structures. Having a library of basic goals, and a way to compose them allow us to treat these

basic goals as high level transitions over the SUT state. That is, giving an agent a basic goal, and

then running it to solve the goal, amounts to transitioning the SUT from one state (the one before

the agent gets the goal) to another (the one after the goal is accomplished). Giving the agent a

sequence of these basic goals amounts to executing a sequence of these high level transitions,

to move the SUT to some new state.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 9

As an example, Figure 1.4 below shows a level design in a 3D maze-puzzle game called Lab

Recruits. It has three doors d1..d3 and four buttons b1..b4. The starting position of the player is

indicated by the yellow circle. E.g. if we want to verify that door d3 can indeed be opened, the

logic to do this is not so trivial. Doors can be opened (and closed) by toggling the right buttons.

Opening d3 requires toggling b3, but access to it is guarded by a closed door d1. Moreover,

toggling b3 would close d1 again.

Figure 1.4: a screenshot from a level design in a 3D maze-puzzle game called Lab Recruits3.

For this example game we have implemented a library of basic goals, it includes the following

(notice that they are parameterized goals):

● interacted(e) : is accomplished when the entity e is interacted with. This goal requires the

agent to be located near e.

● closeBy(e) : accomplished when the agent is located near e. If started in a location which

is not near e, the tactic of this goal will guide the agent to e, provided there is an unblocked

path to it. The game provides a navigation graph, so we can use it to do path planning.

Importantly, note that “guiding” the agent would typically require multiple deliberation

cycles to complete, during which multiple calls to primitive move-action have to be

invoked.

Imagine a testing task to verify that the door d3 can be opened. In terms of a goal predicate 𝜑d3 it

can be defined as a predicate that is satisfied on a state where d3 is open. We have to check that

such a state is reachable. This is done by formulating a sequential goal structure as shown below.

It specifies the shortest scenario that could make d3 open:

SEQ(closeBy(b1), interacted(b1),

 closeBy(d1), closeBy(b3), interacted(b3),

 closeBy(d2), closeBy(b4), interacted(b4),

3 https://github.com/iv4xr-project/labrecruits

https://github.com/iv4xr-project/labrecruits

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 10

 closeBy(d3),

 assertTrue(..., check that d3 is open)

If this goal structure can be completed, the test is passed. Else it fails.

Arguably the test formulation above requires the full sequence of high level transitions that solves

𝜑d3. One might wonder if it is possible to generate this sequence, rather than having the developer

manually specifying it. This will be discussed in the next subsection. However, do note that even

if the sequence has to be given, they refer to high level transitions. The translation of such a

transition to actual runs of deliberation cycles, and how the agent should choose which primitive

action to execute (which is not trivial!) at each cycle, are abstracted away from the testers’

concern.

Tactics and goal structures are very expressive, but we do need to program a set of basic goals

(and their tactics). These are quite domain specific; so tactics that work for one SUT may not work

for another (though their design patterns might be common). However, programming tactics is a

one off investment. Once provided, we can keep using them to automate various testing tasks.

1.4 ONLINE GOAL SOLVING WITH CONSTRAINED OBSERVABILITY

In Section 1.3 we have observed that basic goals can be treated as high level transitions. The

corollary of this is that solving a goal 𝜑 can be seen as a problem of finding a sequence of high

level transitions that leads to a state satisfying that goal. In Section 1.3 we require the

developer/tester to provide the solution. We will now discuss high level solvers that can search

for such a sequence of high level transitions, so that the developer no longer needs to manually

provide it.

We can notice that the basic tactics given as examples in Section 1.3 are parameterized by a

target object; essentially they specify what the agent can do with the object, e.g. to travel to it, or

to interact with it. The state of iv4xr agent contains information about objects it most recently

observes. If the observation is unlimited (which is usually not the case), the agent can observe all

objects in the SUT’s virtual world. Else, only some limited objects can be observed, given the

agent's current location. When the observability is constrained, the agent’s state also stores

information about objects it observed in the past (the mechanism is explained in more details in

Report D2.4). Given knowledge about what objects are known to it, the agent would then also

know which high level transitions are available at its current state. So it then can autonomously

try different high level transitions in order to try to solve a goal.

Just randomly trying different transitions is of course not very productive. Also keep in mind that

online execution is much more expensive than offline execution. A more systematic algorithm is

shown in Figure 1.5.

The algorithm SA1 [Shi+21] takes a goal of the form 𝜑f where f is an object. It is a predicate that

checks the state of the object f. E.g., if f is a door, 𝜑 might be checking if the door is open. It

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 11

iterates over objects o currently available in the agent’s knowledge and reachable from the agent’s

current state. It would then travel to such an o and interact with it, and then check the state of f

again if it now solves the goal 𝜑. Each candidate will only be tried once, and a heuristic can be

given, e.g., to try a candidate that is closest to the agent first, or closest to f first. The algorithm

also incorporates exploration if no untried candidate can be found in the current state.

Algorithm SA1.solve(𝜑f):

visited = ∅

while true

 if runs out budget then return fail // the goal is failed

 do closeBy(f)

 S ← the agent current state

 if 𝜑f(S) then return success // the goal is solved

 repeat

 U = {e | e is an object known in S} / visited

 if U == ∅ then

 if there is still unexplored and reachable terrain then do explore()

 else return fail

 until U ≠ ∅

 take an e from U, e.g., the closest to the agent

 do SEQ(closeBy(e), interacted(e))

 visited = visited + {e}

Figure 1.5: the online search algorithm SA1. The algorithm takes a goal of the form 𝜑f where f is

an object. It is a predicate that checks the state of the object f. E.g., if f is a door, 𝜑 might be

checking if the door is open. The algorithm is formulated imperatively in the usual algorithmic-

style. In the implementation it produces a goal-structure and hence can be combined with other

goal-structures.

SA1 can only solve a goal that can be solved with a single high level transition; the algorithm

essentially tries to find this solving transition. So, it will not be able to fully solve the door d3 testing

task from Section 1.3, but it can solve its fragments. With SA1 the testing task can now be

formulated as follows:

SEQ(SA1.solver(d1 is open),

 SA1.solver(d2 is open), closeBy(b4), interacted(b4),

 closeBy(d3),

 assertTrue(..., check that d3 is open)

Notice that now it is shorter than the original formulation in Section 1.3.

A more advanced version of SA1, let’s call it SA2, has been developed and studied [Shi+22]. It

will be able to solve certain goals whose solutions require a sequence (of high level transitions)

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 12

of length >1. In Figure 1.6 some results on the performance of SA2 on various levels4 in the Lab

Recruits game. The first eight levels are taken from the ATEST 2021 Testing Competition

benchmark5. These are small to medium sized levels of 150 - 600 m2. The last two are levels

simulating two actual levels from an MMORPG game called Dungeon and Dragons online (DDO)6.

The original DDO levels are called Durk’s Got a Secret and Return to the Sanctuary, which we

simulate in Lab Recruits. Figure 1.7 shows the original layout of the DDO Durk level, alongside

its simulated layout in Lab Recruits. These are large levels (Durk is 1600 m2 and Sanctuary is

3400 m2).

For each of these levels a non-trivial goal is chosen and given to the SA2. It manages to solve all

of them. The time needed to solve is given in the table in Figure 1.6. DDO levels took more time

to solve, because they are bigger. The column “tried doors” indicated the number of intermediate

doors that the agent tried in order to solve the given SA2-goal (the main goal). Note that at the

beginning the agent does not know how many doors there are in the level. It starts with almost

zero knowledge, with just some approximate location of where the goal could be, as knowledge.

Figure 1.6: Results of goal solving with SA2 on various Lab Recruits levels. On all these levels

SA2 manages to solve the chosen goal. “Time” is the time needed to solve the goal. “Exploration”

is the time spent on exploring the level. As in SA1, exploration is a key part of the algorithm when

the current state offers no further candidate to try.

4 In gaming jargon, a “level” refers to an instance of the same game, but played in a different world. The game

mechanics stay the same, but a level would have its own unique world layout, objects, and logic between these
objects.
5 https://a-test.org/a-test-2021/
6 https://www.ddo.com/home

https://a-test.org/a-test-2021/
https://www.ddo.com/home

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 13

Figure 1.7: on the left is the layout of the actual DDO Durk level. The picture has been annotated:

yellow stripes/lines are doors (closed at the beginning). There are levers next to most of these

doors that would open the door close to it; they are not marked in the picture. Blue circles mark

key levers that would open important doors. Red are fake doors that cannot be opened. To the

right we see the layout of the simulation of Durk in Lab Recruits. Fake doors are bad for SA2. If it

tries to open one, because it speculates that there might be something useful it can use behind

that door, this would trigger an inner loop of trying out various switches only to conclude at the

end that it is better to forget the door and try another one.

It is actually quite surprising that all these levels are solvable by SA2 (by this we mean goals

similar to opening a door are solvable, for any door in these levels). There are conditions tied to

SA2-solvability. We expect that most levels intended to be playable by a single human player

should be SA2-solvable, but not all. For example, the goal to open d3 in the testing task from

Section 1.3 is actually not SA2-solvable. Some of the conditions that determine SA2 solvability

are also difficult to understand, as they are delicately related to the geometry of the level/world

and the agent’s visibility constraint. SA2 is currently still under further study, to gain better

understanding of its solvability conditions and to also improve its performance (e.g. employing

multiple agents might greatly improve its performance).

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 14

A working prototype of SA2 exists along with experiment results. Its integration into the iv4xr

Framework is postponed to wait for further results, but it is planned for the first quarter of 2023.

2. REINFORCEMENT LEARNING FTA

2.1. INTRODUCTION

Reinforcement Learning (RL) is one of the main machine learning paradigms alongside

supervised learning and unsupervised learning. RL focuses on learning the best course of actions

(adaptive strategy) on an intelligent agent by exploiting its interaction data within a dynamic

environment. Contrary to supervised learning which relies on labeled datasets, the RL training

operates on the agent-environment loop (see Figure 2.1) where the action of the agent can alter

the state of the environment. RL is researched in many domains such as games (board games,

video games), robotics, telecommunications, etc.

Figure 2.1: The reinforcement learning interaction loop

Reinforcement learning can therefore be used to interact with an XR system, learn gradually from

this interaction, and ultimately be able to solve tasks related to that XR system. Here, we are

especially interested in testing the functions of XR systems. RL based approaches have the

potential to significantly improve automated testing as they have the capability of learning directly

by interacting with the dynamic and uncertain XR system environments without the explicit need

of modeling it.

We investigate two ways to implement RL for Functional testing:

1. Reinforcement Learning based Testing (RLbT) - RL solutions for automated testing and

providing functional coverage of XR systems.

2. The RL agent is an opponent to the system and tries to adaptively find weaknesses in the

system under test. The Quality-Diversity Reinforcement Learning (QDRL) techniques

described below find multiple and diverse weaknesses at once.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 15

2.2. REINFORCEMENT LEARNING BASED TESTING (RLBT)

This section describes the use of RL solutions for automated testing and providing functional

coverage of XR systems. The use of RL solutions in automated testing of complex XR systems

is challenging as it involves a vast amount of critical thinking, problem-solving, and path planning.

In particular, in XR systems, the imperfect information of the agent due to its partial visibility of

the environment, the large state-action space due to the long time span of the system, and

delayed or sparse reward assignment pose challenges to effective RL solutions. To address these

issues, careful attention is needed to represent states and actions and to define effective reward

mechanisms in the environment.

To this end, we have used a curiosity driven reinforcement learning approach where we remain

at a higher level of abstraction when defining the states and actions of the reinforcement learning

environment and with a curiosity-based reward scheme that has the ability to become a powerful

exploration mechanism to facilitate the discovery of solutions for complex, sparse or long-time

span tasks. Specifically, the scheme is beneficial in this context where we aim to maximize the

functional coverage. This tactic of using curiosity is more generic as it can be applied to diverse

environments. This reward mechanism enables the reinforcement learning agent to explore the

space of interactions in the game. It encourages the discovery of previously unseen states and

discourages immobility and revisiting of already seen states.

Empirical evaluation is carried out by applying RLbT on a 3D maze-puzzle game called Lab

Recruits. Details about the experiments are presented in [FRK+22]. To assess the feasibility and

effectiveness of reinforcement learning solutions in automated game testing and coverage, we

compare the proposed curiosity-based RL solution with two alternative baseline solutions. First is

sparse-reward RL, a classic RL approach with only intrinsic sparse reward, where an agent

receives positive feedback only when it reaches its goal, otherwise nothing. The second baseline

approach is the pure random solution, where the agent takes decisions randomly.

We carried out our experiments on five levels of Lab Recruits with different characteristics that

allow us to get insight into the applicability of RL in automated testing. Figure 2.2 shows two

among those levels, Figure 2.2(a) presents a level containing 32 buttons and 16 doors distributed

across 8 rooms. The layout of the level is in such a way that the agent can fairly easily spot the

buttons and eventually observe their effects (i.e., doors that open/close) as well. Figure 2.2(b)

presents a randomly generated level where the number of entities is comparable to 8-room (19

buttons and 14 doors distributed across 14 rooms connected by long corridors) but the physical

space covered by the level is significantly larger. This means that the agent needs to travel a long

distance to get from one entity to another. This level poses a different type of difficulty to

reinforcement learning also because observing the effect of an action (e.g., a button pressed) is

difficult as the corresponding door that is opened/closed may not be immediately visible as it

resides in a different room across a long maze of corridors.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 16

Figure 2.2: (a) 8-room level (b) LargeMaze_1 level of Lab Recruits

Several parameters control different aspects of RLbT. Some of the parameters are related to

reinforcement learning, and some are related to the SUT and the test agent used to interact with

it. Based on our preliminary experiments, we selected parameter values that represent a

reasonable tradeoff between effectiveness and efficiency without much loss in the generalizability

of RLbT.

In our experiments, we first discuss the results related to the goal oriented exploration followed

by the coverage oriented exploration. With goal oriented exploration, the aim is to test the game-

play, that is to learn the best way to achieve the specified goal in the game. For the levels of Lab

Recruits we used in our study, this translates to activating a sequence of buttons that open various

doors until the specified target goal is reached, in our case a specific door is opened. Our

experiments on various levels of Lab Recruits shows that the agent is able to effectively learn the

optimal sequence of actions needed to achieve the goal.

In measuring the functional coverage achieved by the RL agent, we concentrate on identifying

the following coverage metrics important for the Lab Recruits game and the approach to measure

the quantitative value of coverage achieved by our explorative agent.

● Entity coverage - percentage of observed/interacted entities (with all possible properties)

in a level of Lab Recruits. For example, the level of Lab Recruits (as shown in Figure 1.4)

features fourteen properties of seven entities (i.e., three doors and four buttons). A door

can be observed in two statuses, thus having two properties Open and Closed. A button

can be observed in two statuses, thus having two properties: pressed or not-pressed.

● Entity Connection Coverage- In a level of Lab Recruits, doors are usually connected with

buttons. This metric measures the ratio of connection satisfies in a level. Measuring the

quantitative value of Entity Connection Coverage is difficult due to the partial observability

issue of the agent. We follow a probabilistic approach to measure this metric.

Figure 2.3(a) and 2.3(b) show the per episode entity coverage achieved during the training phase

for 8-room and LargeMaze_1 level. It is noticed that curiosity-based RL shows good coverage

results in a small and straightforward level like 8-room, while it shows significant improvement in

achieving entity coverage compared to sparse-reward RL and random solution in LargeMaze_1

level.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 17

 Figure 2.3: Entity Coverage per episode (a) 8-room level (b) LargeMaze_1 level of Lab Recruits

We have run a test game-play session to measure the quantitative value of coverage. The result

is compared only between two RL solutions as the test session is guided by the respective learned

policy. Our goal is to observe the coverage ratio obtained by both RL solutions with a limited

budget. Coverage results obtained from our experiments are presented in Table 2.1. It is noticed

that for a simple and small level like buttonDoors both curiosity-based and sparse-reward RL

achieve high/full coverage. While curiosity-based has shown high potential to obtain better

coverage ratio in a large and complex level like LargeMaze_1. Though both RL solutions obtain

low coverage for LargeMaze_2 level, this may be because the learning duration was not enough

to acquire an optimal Q-table.

Environment
Level

 Curiosity RL Sparse Reward RL

Entity Cov Connection Cov Entity Cov Connection Cov

buttonDoors 100% 100% 100% 100%

4-room 100% 80% 60% 50%

8-room 92% 60% 80% 54%

LargeMaze_1 80% 50% 40% 37%

LargeMaze_2 55% 30% 40% 20%

Table 2.1: Coverage measure of difference levels of Lab Recruits game

RLbT can be run in multi-agent mode where it deploys the Multi-Agent Reinforcement Learning

(MARL) architecture. MARL architecture consists of a group of autonomous, interacting agents

sharing a common XR environment to achieve common or conflicting goals.

In MARL, the agents are autonomous entities with individual goals and independent decision-

making capabilities, but they are influenced by each other’s decisions as they apply reinforcement

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 18

learning in a shared environment. This makes the learning of an optimal policy inherently difficult

in MARL. Despite the added learning complexity, a real need for multi-agent systems exists.

Particularly, for complex, physically large and inherently decentralized XR systems where a single

agent learning approach is not effective.

In multi-agent mode, RLbT deploys two agents that work in a collaborative manner in a shared

XR environment with the goal of maximizing coverage. The agents follow two behavior profiles:

active and passive. An active agent is guided by a curiosity-driven reward mechanism to explore

the system and produce a set of actions that cover the various elements in the system as well as

functional aspects such as the connection between doors and buttons, for example. To help the

active agent, RLbT deploys another passive agent that is responsible for scouting the

environment and reporting its observations to the active agent. This enables the active agent to

be aware of the effects of its actions in an efficient way, especially in systems where the

environment is large and complex. For instance, in Lab Recruits where a button in one room could

open a door in another room, the fact that there is a second agent, possibly far from the active

agent, allows us to observe changes to the environment triggered by the actions of the active

agent. The agents communicate and propagate information among themselves through sharing

their observations.

The RLbT multi-agent approach is currently applied on Lab Recruits, exploiting its multiplayer

feature. However, it could be applied to similar systems that support multiple players. We carried

out our experiments on two levels of Lab Recruits: (a) a large level as shown in Figure 2.2(b),

and (b) an extreme level where the entities (buttons and doors) are around 5 times higher in

quantity than the large level and are distributed over a large physical space. The performance of

the multi-agent architecture is compared with that of the single agent. Figure 2.4 and Figure 2.5

shows the global coverage and the per episode coverage achieved for large and extreme levels.

It is noticed that use of multi-agent features increases the global coverage for both levels, but it

becomes beneficial as the level complexity increases.

Figure 2.4: Performance comparison for Multi-agent vs single agent RL on LargeMaze_1 level of

Lab Recruits (a) Global coverage (b) Entity coverage per episode

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 19

Figure 2.5: Performance comparison for Multi-agent vs single agent RL on Extreme level of Lab

Recruits (a) Global coverage (b) Entity coverage per episode

2.3. QUALITY-DIVERSITY RL (THALES MAEV)

This section tells how we use RL in order to find intrusion scenarios in a powerplant guarded by

a moving patrol as illustrated in Figure 2.6. The agent needs to infiltrate the powerplant without

being detected by the guards or the fixed camera. In this scenario we want to find multiple

intruding strategies in order to find all the weaknesses of the guarding patrol.

Figure 2.6: This image shows a simulation of the powerplant environment where the buildings are in

blue, the camera and moving guards in red and the intruder is the blue trace in the top left (along with its

path plan).

QD-RL is bringing the QD approaches to RL. Quality-Diversity is an approach to solving a problem

that maintains a population of candidate solutions and that does not uniquely aim at improving

their quality but instead will balance between looking for improved performance (quality) and

increasing the diversity of the population of solutions (diversity).

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 20

This approach can help explore more diverse types of solutions and avoid that the learning

process focuses too much on a type of solution that will not ultimately be optimal (avoiding falling

in local minima). Also if the final requirement is to output all the solutions of the problem (or as

much as possible), this approach is likely to output a lot of them.

In order to achieve this, QD-RL maintains a population of candidate solutions, called an archive,

and enforces during the learning process that some of the solutions grow apart to favor originality.

Therefore, designing and quantifying originality is an important component of the process.

To quantify originality one can distinguish two main approaches. The first one parametrizes the

space of policies, partitions it, and registers the best policies for each cell of the partition. The

second one defines the originality of a solution in a more relative way, relative to the other

solutions in the population by computing a distance between policies. In our implementation we

followed the latter as defined in [TP+22].

QDRL is a meta algorithm. It is based on a base RL algorithm, in our case TD3, that is able to

solve the base problem but can only output one solution. QDRL works through iteration, maintains

a population of strategies and creates new ones at each iteration of the algorithm. To create new

strategies, QDRL selects among the old ones several that are on the pareto frontier of quality and

diversity criteria. Half of them are improved with respect to performance criterion (using TD3) and

the other half is improved according to diversity criterion (using also TD3 as the diversity is

formulated as a reward and falls directly in the RL framework).

We implemented QDRL on a series of maze problems, whose complexity increases, leading up

to the powerplant problem. Playing with simpler mazes allows us to tune our algorithm and

discover its limits.

Figure 2.7: This shows the execution of several RL agents that successfully introduce the guarded maze

with two guards using diverse strategies from the same starting point. Left: The RL agents start from the

same corner and aim at the center of the maze (green circle). Right: The RL agents are getting closer to

the target using different strategies to defeat the guards.

We evaluate the run of QDRL by looking at different metrics: how does the performance of the

strategies in the archive evolve? How does the diversity of the archive evolve? In order to quantify

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 21

both diversity and quality at the same time we also look at the QD score which is the sum of

performance of all the population in the archive.

Figure 2.8: The evolution of the performance of the RL agents in the archive (left) and the evolution of the

diversity in the archive (right) versus the iterations of the QDRL algorithm.

Figure 2.9: The evolution of the number of successful RL agents in the archive (left) and the evolution of

the qd-score in the archive (right) versus the iterations of the QDRL algorithm.

Figure 2.8 (left) shows that the performance of the archive grows through iterations. This is

consistent with the growth of the number of successful RL agents in Figure 2.9 (left) and the

growth of the QD-score in Figure 2.9 (right). In Figure 2.8 (right) we see that diversity starts low

but very fast grows to a high level that is maintained throughout the experience.

Finally, to quantify the diversity of our agents we can display how these agents acquire an

important coverage of the fields of intrusions.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 22

Figure 2.10: The evolution of the coverage of successful RL agents in the archive over the field of the maze

versus the iterations of the QDRL algorithm.

We see in Figure 2.10 that the QDRL algorithm is able to slowly increase its coverage until it

achieves almost full coverage of all possible paths.

Finally, we tested QDRL in the complete scenario that is the power plant scenario illustrated in

Figure 2.6. Our implementation of the QDRL algorithm fails to find successful RL agents in the

power plant scenario. As explained above QDRL is a meta algorithm that trains a population of

agents with the use of the RL algorithm TD3. We experimented with TD3 alone in the powerplant

scenario, optimizing only for performance and being able to return only one solution. After one

week of training, TD3 is able to output an RL agent with 90% intrusion success.

Replicating the QDRL training process over an archive of at least 20 agents requires a long

learning time. For this reason, future work requires us to implement a parallel version of the QDRL

algorithm spread over multiple processors.

3. SCRIPTLESS EXPLORATORY FTA

3.1. INTRODUCTION

Exploratory FTAs do not follow specific instructions such as a set of tactics and goals or crafted

models to interact with the XR System Under Test (SUT) and to test specific paths of XR

interactions. The objective is based on the execution of non-sequential actions to test that the

SUT and its functional aspects are robust enough to respond to different user interactions.

The automated testing approach of exploratory FTAs in the iv4XR framework is based on

integrating the open-source TESTAR tool. This tool existed before the creation of the iv4XR project

and emerged as a result of the European project FITTEST7. The underlying principle of TESTAR

follows the scriptless approach to test Graphical User Interface (GUI) systems: generate test

7 https://cordis.europa.eu/project/id/257574

https://cordis.europa.eu/project/id/257574

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 23

sequences of (state-actions)-pairs by connecting to the SUT to obtain the State and continuously

executing exploratory actions to bring the SUT to another State while applying Oracles to detect

failures (see Figure 3.1).

Figure 3.1: TESTAR scriptless approach for GUI systems.

An overview paper that describes the TESTAR capabilities to test GUI systems was published in

the STVR journal in 2021 [TV+21]. Although the integration and use of TESTAR for XR systems

were not described, we did acknowledge the iv4XR project in the paper (together with many other

projects and people). That is because several revisions of the paper have been made during the

iv4XR project execution. In the next sections, we describe how the TESTAR tool has been

extended to act as an exploratory FTA within the iv4XR project.

3.2. TESTAR IV4XR EXTENSION

The TESTAR tool is modular software that allows the integration of multiple software frameworks,

plugins or APIs extensions to adapt the concepts of State, Actions, and Oracles to test different

types of systems by using the scriptless approach. While the core package of TESTAR is fitted

with the concept of exploratory FTA, a series of technical extensions were incorporated into the

tool to integrate it as an agent within the iv4XR framework.

1. TESTAR uses the concept of Tags to set and get generic variables <T> to the Taggable

classes that represent the SUT, State, Widget, and Action objects. These Tags that consist of

pairs of <name, value> properties are defined in specific API-Tags classes (e.g., UIATags,

WebTags, AndroidTags, etc.) and customize specific systems properties (e.g., WebTagName,

WebCssClasses, UIAControlType, AndroidResourceId, etc.) that are used to indicate

TESTAR which actions derive or which oracles apply.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 24

To extend TESTAR within the iv4XR framework, a new IV4XRtags class was added to the tool.

To fetch the state of XR systems iteratively and to execute interactions, Environment, and

Controller Tags were added to the classes representing the SUT objects. To allow TESTAR

to map the entities' properties that come from XR systems in order to derive actions and apply

oracles, multiple Tags that represent the Position, Orientation, Size, or Integrity of the

XR entities or the Health and Energy of the XR agent were added to the classes that represent

the State and Widget objects.

In Example T1, TESTAR uses the SE-plugin controller presented in Deliverable 5.4 with the

name iv4xrSpaceEngineers in the SUT object class to obtain the Character interface that

allows FTAs to execute actions such as using Space Engineers (SE) tools. Then, in Example T2,

TESTAR uses the seFunctional property to determine whether a navigate and interact action

must be derived for each widget block observed in the SE state.

SpaceEngineers seController = SUT.get(IV4XRtags.iv4xrSpaceEngineers);
Character seCharacter = seController.getCharacter();
seCharacter.beginUsingTool();

Example T1: Usage of Tags to obtain the SE controller and execute a SE tool action.

for(Widget widget : state) {
 if(widget.get(IV4XRtags.seFunctional)) {
 seActionNavigateInteract(w);
 }
}

Example T2: Usage of Tags to derive navigate and interact actions for functional SE blocks.

2. The State of TESTAR, which represents which virtual entities are observable in a specific

range, consists of a hierarchical set of widgets with properties known as widget-tree. To obtain

the state of XR systems, TESTAR realizes an observation of the SUT using the iv4XR framework,

which allows the tool to obtain the World Object Model (WOM) information (see Figure 3.2).

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 25

Figure 3.2: TESTAR observed State from Space Engineers system.

This implementation to fetch the WOM information through the iv4XR framework and create the

state is implemented by creating a new iv4XR module which extends the core module of TESTAR

(see Figure 3.3). LabRecruitsProcess and SpaceEngineersProcess are the new classes

that contain the functionality to launch the XR SUT and desired scenario, together with the

initialization of the XR environment and controller, which allows TESTAR to communicate with

the XR system. When the SUT starts, and after each action execution, TESTAR uses the classes

LabStateFetcher or SeStateFetcher to use the attached environment and controller

IV4XRtags to realize the observations that allow the tool to obtain the WOM information and

create the TESTAR State.

3. In order to interact with the virtual entities that are represented as widgets in the state, TESTAR

needs to derive different types of Actions for the different types of interactive entities (see

Figure 3.4). The new TESTAR iv4XR module contains two new main types of actions: basic

action commands and compound action goals. A basic action command is the most basic event

that TESTAR can execute using the iv4XR framework, e.g., move or rotate one step, equip or use

a tool. However, due to the essence and complexity of XR systems, most of the time, it is

necessary to execute a compound action goal that allows the exploratory FTA to navigate, aim

and interact with an entity using an SUT tool.

Compound actions goal contains an additional TestAgent taggable object to allow TESTAR to

execute tactics from the goal-solving agents as actions. This helps to reduce integration effort if

the SUT is ready to run with this other type of FTA.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 26

Figure 3.3: TESTAR iv4XR state module.

Figure 3.4: TESTAR iv4XR action module.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 27

4. The core module of TESTAR integrates generic Oracles intended to verify the robustness of

the SUT to detect if the system process has crashed or hung. Within the context of iv4XR, the

TESTAR tool has been adapted to check for suspicious messages in the entities that are part of

the game, as well as their terminals and panels, and to analyze for the exception messages in

external SUT logs, as in the case of SE.

Although verifying the robustness of the SUT gives effective results when testing GUI systems,

for XR systems, it is of great importance to test the functional aspects of the virtual entities. We

extended the tool with new oracles to make the exploratory FTA capable of detecting functional

failures for XR systems.

In the SE environment, it is essential to verify that the integrity of all type of block increase or

decrease correctly after interacting with different tools, that the agent health, oxygen, hydrogen,

and energy is restored when interacting with medical rooms or cockpits, that the jetpack and the

dampeners are not switched without player activation, or that it is possible to construct new blocks

if the player has the materials (see Figure 3.5).

Figure 3.5: TESTAR oracles to test the functional robustness of the SE environment.

5. TESTAR can infer a State Model while in a state s, it selects and executes an action a and

obtains a new state s’. The transitions (s → a → s‘) are then stored in the model until the tool

stops the exploratory process. Extending the model to use the new IV4XRtags, iv4XR State,

and iv4XR Action allows TESTAR to infer a state model while exploring XR systems.

This model can be beneficial for the stakeholders to visualize the model transitions, query the

model and create offline oracles, or apply more intelligent action selection decisions as

Reinforcement Learning (RL) strategies by remembering what states were discovered and which

actions were executed. However, the TESTAR state model was originally designed for traditional

GUI systems, on which the states contain all the available widgets to interact with.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 28

In XR systems, the agents have the possibility of navigating around the virtual environment in

order to reach the interactive entities. Because the entities that the agent observes are determined

by an observation range, the position of the agent, and potential blocking elements, the

exploratory FTA TESTAR needs to explore the navigable areas of the XR environments while

storing the position of the entities to learn which of them are reachable (see Figure 3.6).

Figure 3.6: Navigable State/Space of the LabRecruits system.

For this reason, the TESTAR state model was extended with the concept of NavigableState

(see Figure 3.7). The objective of this new NavigableState is to allow TESTAR to explore the

navigable positions of the environment as it saves the information of which entities are reachable,

then executes interactive actions defined as NavigableAction (e.g., open a door by interacting

with a button), to continue with a new exploration of the available state positions.

Figure 3.7: TESTAR iv4XR navigable state module.

6. The default Action Selection Algorithm of TESTAR makes stochastic decisions to

explore the SUT. The extension of the State Model allows this FTA to remember which XR

positions were explored and which XR entities interacted to prioritize the selection of Unvisited

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 29

Actions trying to expand the exploration coverage in terms of exploring different areas and

interacting with different entities. Although this approach helps to interact with as many different

entities as possible, there is no learning phase to consider other possible entity features, such as

entities that provoke changes in the environment or in the agent itself (e.g., realizing an

exploration that learns which interactions modifies the agent fuel to take a posterior decision to

test the functional jetpack feature).

We have developed a new RL framework in TESTAR that allows attaching additional RLTags

in the State and Action objects of the State Model to automatically calculate and assign

reward values and learn from the previously executed transitions. This framework does not follow

a specific RL strategy. Instead, it allows stakeholders to implement their Policy, Reward, and

QFunction strategies to adapt the learning phase for different types of SUTs (see Figure 3.8).

Figure 3.8: TESTAR new Reinforcement Learning framework.

7. The State Model inference benefits the exploration process of TESTAR by prioritizing the

selection of Unvisited Actions. However, for large XR environments, inferring a model

requires a long execution time. In order to speed up the exploratory process, we have developed

a Distributed approach.

Multiple TESTAR instances can now connect to a centralized state model to share the knowledge

of the observed environment. This is possible due to the usage of the same abstraction

mechanism used in TESTAR to identify states and actions using the widget properties. A new

Action Selection Mechanism (ASM) allows all TESTAR instances to coordinate their action

selection by marking the target actions they pretend to execute.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 30

Figure 3.9 represents how three different instances coordinate to select actions that were

discovered but not yet executed. While Instance 1 can mark the closest red-action to execute,

Instances 2 and 3 need to coordinate in the action selection because they are both in the same

state. Instance 3 first marked the orange-action to execute, then Instance 2 read this mark

information in the central model and decided to mark the blue-action that exists one state away.

Figure 3.9: TESTAR distributed state model inference approach.

3.3. TESTAR OUTPUT FILES

As the exploratory agent TESTAR observes, navigates, and interacts with the XR entities, it can

create four different types of output files (see Figure 3.10) that stakeholders can use to analyze

the testing process and to obtain detailed information about potential detected failures.

1. HTML report: In each action iteration, TESTAR creates this action-by-action report with

visual and textual information. It uses the Windows API to obtain a screenshot of each

observed state and the information obtained through the iv4XR framework that indicates

the existing interactive entities in those states.

2. State Model: As we have mentioned, TESTAR infers a State Model while exploring the

XR system. The tool also offers an Analysis mode that launches a web service that allows

visualizing the states and actions of the model.

3. Spatial Map: In some XR systems, such as LabRecruits or SE, the information of the

level representing the environment on which the FTA will realize the exploration is stored

in a local file that indicates the size and the existing elements. For these cases, it is

possible to obtain Spatial Coverage metrics and create a visual map indicating which

space was covered by TESTAR and which entities were observed and interacted with.

Deliverable 5.4 contains a use case example of spatial coverage metrics with SE.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 31

4. Code Coverage: It is possible to integrate the usage of code coverage software in

TESTAR to obtain lines and branch coverage metrics that indicate which internal code

functions were executed during the TESTAR exploration. For example, for SE, TESTAR

can automatically download and execute the OpenCover8 software to obtain these

metrics.

Figure 3.10: TESTAR output files created during the testing exploration.

3.4. REFERENCES FOR DOCUMENTATION, VIDEOS AND PAPERS

The wiki section of the TESTAR_iv4xr GitHub repository contains technical details regarding the

architecture of the TESTAR software and instructions with videos for the configuration and usage

of the tool.

- https://github.com/iv4xr-project/TESTAR_iv4xr/wiki

The iv4xr-framework GitHub repository contains documentation indicating the scientific

publications related to TESTAR and instructions about how the tool can be used as an exploratory

FTA to test LabRecruits and Space Engineers systems.

- https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/testar/TESTAR.md

4. COVERAGE

The functional test agents implemented in the iv4XR project support different coverage criteria.

Coverage informs testers how much a system is exercised by a test suite. The notions of

functional coverage supported by the iv4XR test agents include:

● Code coverage. Code coverage represents the portion of the SUT’s source code

executed when a test suite is evaluated on the SUT. As all the iv4XR test agents support

the execution on SUT, code coverage can always be collected.

● Spatial (or area) coverage. An XR system typically includes a representation of a 3D

space. Spatial coverage refers to the fraction of the space the testing agent can explore

8 https://github.com/OpenCover/opencover

https://github.com/iv4xr-project/TESTAR_iv4xr
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki
https://github.com/iv4xr-project/iv4xr-framework
https://github.com/iv4xr-project/iv4xr-framework/blob/main/docs/testar/TESTAR.md
https://github.com/OpenCover/opencover

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 32

during test suite execution. TESTAR supports spatial coverage for the Space Engineers

game (see D5.4). The goal solving agent (see Section 1) includes the notion of area

coverage (see D3.4).

● Model coverage. When a model of the system is defined, several notions of model

coverage can be considered. Both TESTAR (see Section 3.2) and EvoMBT (see Section

4.1) include a notion of model. Instances of model coverage supported by the iv4XR test

agents include:

○ state coverage: a state represents an entity in the system. To satisfy state

coverage a test suite has to explore all the entities defined in the SUT. Both

TESTAR and EvoMBT support state coverage;

○ transition coverage: a transition models an action performed in the system by the

agent. The transition coverage criterion is satisfied when all the actions in the SUT

are executed. EvoMBT supports transition coverage;

○ k-transition coverage extends transition coverage requiring that all the possible

sequences of actions of length k are executed. EvoMBT supports k-transition

coverage.

● Quality-Diversity coverage. Quality-Diversity coverage refers to the proportion of the

SUT interaction space exerted by the execution of a test suite. Quality-Diversity coverage

can be seen as an instance of model coverage, where only the set of available interactions

is considered in the model. Satisfying Quality-Diversity coverage is particularly hard in XR

systems, as the interaction space could be huge. Section 4.2 presents an algorithm to

tackle the problem for the Space Engineers pilot.

4.1. EVOMBT: EVOLUTIONARY MODEL BASED TESTING

EvoMBT combines model-based testing (MBT) with search algorithms for the automated

generation of test cases for systems with complex and fine grained interactions such as XR

systems.

4.1.1 Model-based testing

Model-based testing (MBT) is a well established field in automated testing where formal

representations of a system under test (SUT) are used to drive the generation of tests satisfying

various coverage criteria. In particular, when the SUT presents a high level of complexity, applying

MBT could be beneficial as it helps reduce complexity making test generation manageable.

Furthermore, abstraction via models allows one to focus on desired aspects of the SUT, further

reducing complexity. In situations such as XR systems, where the environment is highly

interactive, MBT offers an advantage from the test generation perspective as it allows to model

and interact with only a specific aspect/scenario of the system. Eventually, additional SUT

behaviors could be modeled and tested in an iterative manner until the desired testing goal is

reached.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 33

Figure 4.1: Model-based testing cycle.

MBT test generation cycle depicted in Figure 4.1 comprises four main actions:

1. Abstraction. The set of features of SUT that are the subject of the testing activity are

synthesized into a proper model.

2. Test Generation. Tests are produced from the model accordingly with a specified

coverage criterion. Typically, the test generation phase ends when the set of generated

tests (i.e., test suite) which satisfy the input coverage criteria. In this phase, tests are

abstract and cannot be executed on the SUT.

3. Concretization. Abstract tests are converted into concrete/executable tests that can be

executed on the SUT by an autonomous agent.

4. Execution. Concrete test cases are executed on the actual SUT. In this phase, it is

possible to collect code coverage data as well as expose faults in the SUT.

Modeling the SUT as an Extended Finite State Machine

Different modeling approaches and languages are available depending on the nature of the SUT

and the desired testing objective. EvoMBT uses extended finite state machines (EFSMs) as a

modelling tool for capturing the desired behavior of the SUT. EFSMs are suitable for test

generation of stateful applications (such as XR systems) as they provide internal variables that

capture desired attributes and eventually use them to decide whether or not an action could be

performed.

EFSMs are formal models where a system is represented by a number of states in which it can

be at a given point, and changes from one state (source) to another (target) by means of

transitions. Such transitions are guarded by conditions that depend on the internal variables of

the model as well as input variables. The transitions could also have effects where they update

the values of one or more internal variables. Two transitions are sequential if the target state of

one transition is the source state of the other transition. A path on an EFSM is a finite sequence

of sequential transitions from the initial state. A path is feasible if, when executed on the model,

all the transition guards are satisfied. An abstract test case is a feasible path.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 34

Concrete test cases as iv4XR framework Goal Structures

EvoMBT is integrated into iv4XR framework (see the iv4XR framework documentation9) and

translates each transition into an iv4XR Goal Structure (see D2.4 for a detailed description of the

framework). Concretized test cases can be then executed by the iv4XR agent as described in

D2.4. Concretization and execution are specific for a system and EvoMBT exposes API to easily

integrate SUT specific execution with model-based test case generation.

4.1.2 EvoMBT software architecture

EvoMBT implements 5 main components that are glued together via clearly defined interfaces

and with a Main class that serves as a point of entry by exposing the various parameters of

EvoMBT for command line as well as API access.

● Model representation. This is a core component that provides the representation

formalism of EFSMs and all the corresponding operations on them.

● Test case representation. This component handles the representation of abstract test

cases and test suites for use by the search algorithm. Test cases are feasible paths in the

EFSM and test suites are sets of test cases. This component also provides different

implementations of test case factories that are used for initializing the search algorithms

with initial candidate test cases.

● Coverage goals. This component handles the representation of the various coverage

goals. EvoMBT provides implementations for state, transition, and k-transition. Further

coverage goals could easily be implemented by extending existing ones or by providing

new implementations to the generic interfaces defined in this component.

● Test case execution. This component handles execution of abstract test cases on the

model for the purpose of computing the corresponding fitness value, as well as the

concretisation and execution of test cases on the SUT, whenever available. An execution

of an abstract test case corresponds to replaying the path represented in the test case on

the model, starting from its initial state. During execution, different observers are notified

of different events, e.g., a transition traversed. One such observer is the coverage goal

manager that deals with keeping track of the execution trace and calculation of fitness

values. EvoMBT natively supports concretization for Lab Recruits and Space Engineers

(see Section 4.1.3 below).

● Algorithm. This component is responsible for the various algorithms used for test

generation. EvoMBT uses the algorithms implemented in EvoSuite. Since the interfaces

used in EvoMBT are compatible with those in EvoSuite, most of the algorithms

implemented in EvoSuite are readily usable in EvoMBT. Whenever there are strong

deviations in some algorithms, they can be adapted for EvoMBT accordingly.

The EvoMBT tool is presented in [FR+22]. Instructions for running and extending EvoMBT are

available in the EvoMBT wiki.

9 https://github.com/iv4xr-project/iv4xr-framework

https://www.evosuite.org/
https://github.com/iv4xr-project/iv4xr-mbt/wiki
https://github.com/iv4xr-project/iv4xr-framework

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 35

4.1.3 Case Studies

EvoMBT is generic and not bound to a specific SUT. In the context of the project, we implemented

native support for two games: Lab Recruits and Space Engineers.

Lab Recruits

Lab Recruits10 is a 3D game developed in the context of the iv4XR project. Here, we recapitulate

the main features relevant for MBT. Lab Recruits game levels consist of different maze-like

scenarios involving one or more players interacting with surrounding entities and with each other.

The game levels are created by the game designer through a customized level notation. The level

designs are saved as comma separated value (csv) files and loaded into the game by the player.

To describe how EvoMBT applies to Lab Recruits, we consider the level in Figure 4.2 that extends

the level presented in Figure 1.4. The level in Figure 4.2 includes three doors (door1, door2,

and door3), four buttons (b1, b2, b3, and b4), and one goal flag (gf0). Doors are opened/closed

by pressing on one or more buttons. It is however not necessary that all buttons be connected to

doors, i.e., some buttons may not be connected to any door. In the level of Figure 4.2, b0 is not

connected to any door, hence pressing it has no effect on the status of the doors in the level. Goal

flags award points to the player and can be used to simulate treasures or game rewards. The

player has to open door3 and reach goal flag gf0. To do so, the player needs to press a number

of buttons in specific sequences. One possible sequence of actions could be to press first b1 to

open door1, then b2 to open door3, however since b2 toggles door1 as well, the player requires

to open door1. The player needs to pass door2 and press b3 to open door1. At this point the

player can go to door3 and reach gf0. We can see from this example that even if the level seems

simple, activating certain aspects of the level is non trivial, in particular from the perspective of

automated testing. Clearly when the levels become large and complex, the difficulty increases

accordingly.

Figure 4.2: Lab Recruits level extension of Figure 1.7

Figure 4.3 shows one possible way of modeling the Lab Recruits level in Figure 4.2. The model

captures the essential features of the level while abstracting away from details that are not of

10 https://github.com/iv4xr-project/labrecruits

https://github.com/iv4xr-project/labrecruits

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 36

interest to the tester, such as the precise position in the 3D world. The model focuses on checking

the consistency of the button-door connections as well as the correct behavior of goal flags.

In general, game entities, such as buttons, goal flags, and each side of a door, are represented

as EFSM states. For each door, states d_p and d_m model the two sides of door d. The EFSM

in Figure 4.3 has four button states, b0, b1, b2, and b3, six door states d1m, d1p, d2m, d2p, d3m,

and d3p, and a goal flag state gf0.

Figure 4.3: EFSM model for Lab Recruits level in Figure 4.2.

EFSM internal variables record door status. The EFMS has a boolean variable for each door that

is true if the door is open and false otherwise.

As stated above, EFSM transitions represent player actions. With the abstraction of the model in

Figure 4.3, a player can move from an entity to another, walk through a door, and toggle a button.

Therefore, the EFSM has three types of transitions: solid edges for free travel, when the agent

can move from one entity to the other without traversing a door; this type of transition has empty

guard and effect. Dotted transitions model guarded movements that happen when the agent walks

through a door; the guard checks the status of the corresponding internal variable. Dashed self

loop transitions are for toggle actions, i.e, the agent presses the button; the effect changes the

value of the internal variables associated with the doors connected to the pressed button.

Running EvoMBT on Lab Recruits

In this section, we will report the results of a small experiment in which EvoMBT is applied to Lab

Recruits level. A more extensive study is presented in [FR+21].

To challenge the search algorithms included in EvoMBT, we consider a LabRecruits level, named

Large, significantly larger than the one in Figure 4.2. as it includes 50 states, 194 transitions, and

15 internal variables. We consider five different test generation strategies included in EvoMBT:

MOSA, MONOTONIC, STEADY STATE, SPEA2, and NSGAII. As the considered generation

strategies are inherently stochastic, we run EvoMBT on the large model 20 times for each test

generation strategy. Each run has a time budget of 300s, namely, the test generation process

stops after 300s if the coverage is less than 100%. Figure 4.4 summarizes the results of the

experiments plotting the coverage over time achieved by each test generation strategy.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 37

Figure 4.4: Model coverage over time for a Lab Recruits level.

The experiment highlights the main features of EvoMBT when executed on a model. First of all,

EvoMBT allows using different test generation strategies that may have different performance. In

this experiment, MOSA strategy outperforms other methods in terms of both effectiveness, i.e.

the final coverage achieved, and efficiency, the convergence speed. However, different models

could give different results and EvoMBT gives the testers the flexibility to select the approach

more suited for the actual SUT. Moreover, EvoMBT reports detailed information about execution.

In particular, EvoMBT takes a snapshot every t seconds, where t is a user-defined parameter (10s

in Figure 4.4), and collects different information including the number of covered goals, the

coverage, the number of fitness evaluations, and the percentage of the feasible path. All this

information informs the tester about the generation process and helps in refining the model

definition.

Finally, we concretize and execute abstract test cases generated on Lab Recruits level Large.

EvoMBT produces a high-level report that includes the number of tests executed/passed and the

total time required. Moreover, EvoMBT creates a detailed summary of test execution that includes

detailed information about each executed iv4XR Goal Structure. A detailed description of EvoMBT

is available in the wiki.

Space Engineers

The Space Engineers (SE) game is one of the industrial use cases of the iv4XR project. The SE

plugin developed within the framework exposes the API used by EvoMBT. Therefore, it is possible

to load a csv level and create the corresponding maze level into the SE environment.

https://github.com/iv4xr-project/iv4xr-mbt/wiki

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 38

Similarly to LabRecruits, a maze level consists of several rooms connected by doors, which

supports the definition of Extended Finite State Machines (EFSM) and the automatic generation

of test cases. A detailed description of this EvoMBT approach for Space Engineers is reported in

D5.4.

4.2. QUALITY-DIVERSITY OPTIMISATION FOR TESTING SPACE ENGINEERS

In the game Space Engineers, one to the pilots of the iv4XR project, has many different types of

blocks, which can be placed and interacted with in many different ways. The placement of blocks

next to one another can also change their properties, which makes the task of testing the

interactions with these blocks a complex one. One of the biggest problems is ensuring relevant

coverage of the interaction space when the amount of blocks and their possible combinations

makes it infeasible to test every scenario. One particular situation that is important to test is the

interaction of multiple users with the same blocks, given the multiplayer gameplay of SE.

To tackle this problem, we developed a tool that generates test cases composed of actions for

two test agents that promotes diversity for groups of sequences of actions in a given Space

Engineers scenario. We created simulated versions of Space Engineer's levels based on grids

and block ids, as can be seen in Fig. 4.5. The map is always a 2D square and the blocks are

always connected to each other. Just like the Space Engineers game, blocks can be armor blocks

or functional blocks, depending on their id. Blocks can be “reachable” or “unreachable” depending

on whether they have a visible side or not. Agents can only interact with reachable blocks.

Figure 4.5: A Space Engineers game map represented as a grid. In this example, the map dimensions

are 10x10 with 20 total blocks in it.

By implementing a version of the Quality-Diversity optimisation algorithm to generate grids of

action sequences, our tool has shown to be capable of creating grids with very good total diversity

values, ensuring that various interactions are covered and that redundant testing is minimized.

Actions are defined by the interaction performed (grinding, welding, or using) and what block is

the target of the action. Actions are characterized by a code where the interaction is represented

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 39

by its first letter (“G”, “W” or “U”) and the target block is defined by its position coordinates of the

square map. For example, the code “W-0,1” means applying the action “welding” to the block at

the position “0,1”. We decided to diversify action sequences instead of standalone actions. So,

we will be generating action sequences for each player: as there are two players, we refer to them

as an action sequence pair.

The diversity is guided by a 2D Quality-Diversity grid, whose dimensions are “Action Repetition”,

and “Block Repetition”. Therefore, the tool generates diverse sequences of actions for the two

agents that differ in the repetition of actions (performing the same actions repetitively or avoid

repeating the same action) and differ in the block targeted (both agents using the same block, or

using different ones). An example of a 5x5 grid and an example of action sequence pairs in two

different positions can be found in Fig. 4.6.

Figure 4.6: Action Grid Example: a 5x5 grid with examples of the pairs in positions (0,0) and (4,4).

In order to evaluate the bug detection capabilities of this tool, we created a game simulator,

accompanied by a bug generator, where the actions from the grid are performed and generate

the expected outcomes that would be generated in the real game. Our results showed that the

tool is capable of generating test cases that can detect a good number of single-player bugs as

well as multiplayer bugs. The comparison of the approach versus the use of randomly chosen

action sequence pairs is shown in Figure 4.7.

Figure 4.7: Chart showing the results of bug detection of the action grids approach vs the use of random

sequence pairs.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 40

5. AUGMENTED REALITY

5.1. INTRODUCTION

Taking as a reference the Google ARCore project, capable of creating Augmented Reality

experiences, we developed a new tool that uses this technology, and implements tests that

evaluate properties such as the position and size of AR objects in AR environments. The core

approach was using the Record and Playback functionalities in order to support recording AR

sessions and run the AR tests on these recordings.

The recorded AR sessions are used as inputs in the tool, which allow to establish desirable test

environments. These represent common AR interactions that include moving the mobile phone

camera and showing some real world objects. The tests make it possible to verify that certain

properties of AR objects are met in the recorded environment.

5.2. USE CASE

To demonstrate the tool we developed a simple AR application as the System Under Test. This

SUT is a mobile application, the game Tanky, that uses the camera input to allow users to capture

the real environment and put virtual 3D objects on it. The application is able to analyze the real

environment and infer the available surfaces. Based on that it defines appropriate coordinate axes

to place the virtual 3D objects.

Tanky

Tanky is an AR application that implements a simulation of a conflict between two war tanks. This

tank game allows the user to interact with virtual tanks and place them in the real world. With the

mobile device, it is possible to capture the real scene of the environment and tap the screen to

insert a tank. A 3D object with the shape of a tank is placed in the location defined by a 3D point

(x, y, z), inferred from the context. Similarly, more tanks can be added to the environment by

tapping the screen. This will cause each one to occupy a certain place and, persistently, retain its

location properties throughout the AR session.

Figure 5.1: Virtual tank in a real scenario using Tanky

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 41

The game is played in turns. On the first turn, tapping the screen will place a tank in the AR world;

in the next turn, another tank will be added. The next actions of touching the screen will make the

tanks shoot, alternating each turn.

Google ARCore

Tanky uses the features of ARCore, Google's open source platform for creating augmented reality

experiences. Through the mobile device's camera, ARCore is able to integrate virtual elements

with the real world. It does this by tracking the mobile device as it moves, creating its own

perception of the real world.

We used the ARCore Record and Playback functionalities to implement the testing tool.

Figure 5.2: Record and Playback buttons in the AR application

Record

First, we recorded a set of videos that constitute a gallery of situations (e.g. test cases) to use in

the AR application under test. The recordings are sessions stored on the mobile device containing

specific metadata that will allow the simulation of the user interacting with the recorded session

later, in a playback session. We recorded videos with distinct characteristics combining still,

moving, rotating the camera device, with moving back and forth relative to a specific point, or

circling it The set can be extended by the tester to include different testing situations in the gallery.

Playback

It is possible to navigate and open the folder containing the gallery of previously recorded videos.

In the playback, the user is a spectator and the system will interpret the recorded physical

environment and detect the different surfaces and the coordinate system. The environment will

be ready for interaction after this step, e.g., 3D tanks can be placed on the surfaces detected by

the application.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 42

Figure 5.3: Gallery of recorded AR sessions

5.3. THE TESTING PROCESS

The components involved in the AR test process and are related to the SUT are depicted in figure

5.4.

Figure 5.4: Elements of the AR testing process

Espresso framework

The Espresso testing framework is used for the construction of the tests in a quick and effective

way. This technology is intuitive and easy to read, and is key to supporting automated testing.

To create an Espresso test it is necessary to use the AndroidJUnit4 class, declare the @Rule and

write the @Test (see figure 5.5).

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 43

Figure 5.5: Use of JUnit, @Rule and @Test for the design of a test

The @Rule references the main class. And inside @Test, all the code that represents the logic

of the test is written. An example of Espresso-based code that produces a button click (on the

Playback button) is shown in figure 5.6.

Figure 5.6: Click to Playback button using Espresso

Inputs

For the design of specific test cases, it has been sought to use certain recorded AR sessions,

which allow the test cases to be addressed in a more effective way. In the elaboration of the test

cases, possible relevant behaviors of the AR technology that can be tested and are relevant have

been analyzed.

For a specific test, it will be needed to record a specific AR session. Multiple tests can use the

same recorded video, depending on the test objectives.

The test needs pre recorded videos of AR sessions, as stated before. These videos must have

good lighting, and the colors of the environment must not be too similar to each other. This will

make it easier to automatically detect surfaces and detectable elements in the application.

Outputs

The tester will receive the appropriate feedback if any of the conditions and assertions of a test

are not met. The tool will present a message to the user indicating that the SUT has not passed

the test. The letters of the text are red, with a saturation and contrast in harmony with the

background.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 44

On the contrary, if the test process has ended without any problem, the message that will be

displayed to the user will contain the text “Test passed”. In this case, green tones are used which,

as in the previous case, are balanced with the general color range.

In addition, the system output, reflected in the Run tab, will indicate if the test has been passed.

Otherwise, it will return an error and give information about the part of the code associated with

it.

Figure 5.7: Test Failed pop-up message

Figure 5.8: Failed test result

Figure 5.9: Test Passed pop-up message.

Figure 5.10: Passed test result

Figure 5.11: Final message that indicates if the test was passed or not

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 45

Test construction

For the elaboration of a test, in the first place one needs to determine what needs to be tested.

This can be a property of a 3D object that exists in the AR environment, or how a 3D object

interacts with the environment, among others.

Then, a process has been designed that represents the list of actions that the test agent will

execute automatically in the SUT, to force a context in which the test can be done properly. This

involves the following steps:

1. Load and play a previously saved video that refers to the AR sessions selected for the

test. This can be achieved by:

a. Pressing the “Playback” button to access previously saved videos in the test

gallery.

b. Select the target video and play it.

2. Carry out the actions on the AR session, such as placing 3D objects in the environment.

After automatically performing the necessary actions on the AR session, assertions are executed

in the test, to determine if certain rules that establish that the test has been passed successfully

are met. A message shows the results, using green letters, informing success, or using red letters

to indicate failure.

Test execution

To run the tool on a physical mobile device, it must first be configured to allow USB debugging.

To do this, the user has to navigate to USB debugging (Settings > Developer options > USB

debugging) and enable it. Then the device must be connected to the computer where the tool

project is located. Finally, when the device is detected in Android Studio, the user must click on

the Run button.

To run an AR test, users must first load the AR test package called ar_tests. In the project

structure, the user will see the set of tests available.

Figure 5.12: Location of AR tests in the project

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 46

To run one of the tests, these steps can be followed alternatively:

● Right click on the test > Click on Run.

● Double click on a test to open its code > Click on the Run button, represented as a green

triangle on the toolbar.

● Double click on a test to open its code > Click on the Run tab > Click on Run.

It is convenient to make sure that the name of the desired test appears as selected, so that it is

the one that is executed. That can be checked on the toolbar.

Figure 5.13: Selection of activity to be executed.

The selected test will then be executed, automatically performing the actions specified in its code,

as well as the corresponding checks and assertions.

5.4. INTEGRATION WITH THE IV4XR FRAMEWORK

Regarding the integration with the iv4XR framework, the needed libraries (e.g., aplib) were added

to the AR testing project. Then some java classes were created to adapt the application to the

iv4XR architecture. These classes are MyAgentEnv, GoalLib and MyAgentState. A test file will

use these resources to establish the operation of a test designed with iv4XR features.

MyAgentEnv

MyAgentEnv creates an environment based on the AR application activity. It also contains

methods like observe, tapScreen, clickButton and selectVideo, allowing these last three to

perform actions in the environment.

GoalLib

This class contains methods to create goals based on the possible actions specified on

MyAgentEnv.

MyAgentState

MyAgentState extends Iv4xrAgentState, it implements the method updateState, responsible for

updating the state based on the anchors displayed.

Test files

Each test file contains a goal structure in which there is a sequence of goals, being these related

to clicking the Playback button, selecting a recorded AR session and then tapping the screen to

place AR objects. After that, there are assertions that determine whether the test passes, based

on certain criteria.

In a test, the necessary goals are grouped in a GoalStructure, which represents the sequence of

actions that must be executed in the system automatically. An example of a GoalStructure would

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 47

consist of the goals related to clicking the Playback button, selecting a video from the gallery and

touching the screen.

Figure 5.14: Architecture of AR test system integrated with iv4XR framework

5.5. AR TESTS

During the development of the game, several bugs were included on purpose to simulate incorrect

scenarios and thus validate our testing methodology.

Four tests were designed and implemented to verify different properties in AR environments. They

use Tanky as the SUT, and automatically execute actions in the environments it provides.

First of all, the Surface Test focuses on ensuring individual properties of each tank. Secondly, the

Collision Test looks for the validation of behaviors that involve more than one tank at a time. Third,

the Depth Test aims to verify the capabilities of the application's depth system, checking the

ARCore depth API. Finally, the Rotation Test is aimed at analyzing the state of the tanks when

the user changes the perspective of the mobile device. We tested, additionally, if the maximum

number of tanks that can be placed is 2.

Surface test

At the start of each game, two tanks must be placed in the environment, representing the two

characters in the game. The tanks must appear in the place where the user has decided by

touching the screen, and the properties with the X, Y and Z axes must be respected. In this case,

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 48

it will be tested that, when placing a tank, the only rotation assigned to it is related to the Y axis.

This assures that the tank is correctly placed on the surface.

When the tank is placed in the environment it must not have rotation in the X or Z axes, which

would imply that it is not well positioned on the surface. If the X or Z axis rotation value is non-

zero, the tank will be oblique to the surface, which should not be correct. In that case, the test will

fail.

In terms of development, a GoalStructure was created in the test file that prepared the test

scenario, as can be seen in the following image.

Figure 5.15: Sequence of goals specified in an AR test

Then, an assertion is used to check that for each tank, the value of its rotation in the X and Z axes

is zero. If so, a Test Passed message is returned, and the assertion causes test results returned

at the system-level to be Passed.

Figure 5.16: Assertion for the surface test

Collision test

In the real world, tanks cannot occupy regions of common space. Each one is located in a place,

and a point located in the coordinates X, Y and Z can correspond to the space occupied by a tank

or by none; never by two tanks.

This must be true in the application. Two virtual tanks cannot be in the same place at the same

time. Similarly, if these tanks change position over time, they should not be able to intersect.

To achieve this, the dimensions of the virtual tanks have been determined. These represent the

associated hitbox. First, the virtual object file of the tank has been processed, and its lines have

been iterated to find those that start with v and represent the vertices of the tank. In each of these

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 49

lines three sections can be distinguished, each of them representing a coordinate on the X, Y and

Z axis, respectively. From this information, the maximum and minimum value relative to each axis

has been calculated: max(X), min(X), max(Y), min(Y), max(Z), min(Z).

Figure 5.17: 3D tank vertex data

Once these values have been calculated, the length of the tank on an axis is calculated as the

subtraction between the maximum and minimum value for that axis:

length(X) = max(X) - min(X)

length(Y) = max(Y) - min(Y)

length(Z) = max(Z) - min(Z)

The next step is to know the location of a virtual tank that has been placed in the real world. This

information corresponds to the translation values of the virtual object:

location(tank, X) = translation(tank, X)

location(tank, Y) = translation(tank, Y)

location(tank, Y) = translation(tank, Y)

With the location and size of the tank its hitbox can be computed. The hitbox is centered on the

middle of the 3D model the represented the tank:

hitbox(tank, X) = (location(tank, X) - length(X)/2) .. (location(tank, X) + length(X)/2)

hitbox(tank, Y) = (location(tank, Y) - length(Y)/2) .. (location(tank, Y) + length(Y)/2)

hitbox(tank, Z) = (location(tank, Z) - length(Z)/2) .. (location(tank, Z) + length(Z)/2)

By checking if the tanks’ hitboxes intersect we can test the occurrence of a collision. In the case

that this is not the intended behavior, the test should fail.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 50

Depth test

ARCore's Depth API allows users to estimate depth from real-world information. The shape and

size of the elements captured by the camera serve as support to create a depth image every time.

These images represent areas with associated colors, with the red areas being the closest ones,

and the blue areas being the furthest away areas.

As it is typical in a war-fighting game, barriers and hiding spots should be used to protect the tank

but also constitute obstacles for its movement. The obstacles/hiding locations in this case are

real-world items, so it is required to map them and understand the distances between them and

the camera. This supports checking the occlusion of objects in the environment (i.e, determine

whether the tank should be positioned in front of or behind the real object). To achieve this, the

tool must verify if the depth image generated by the application corresponds to reality.

Figure 5.18: Depth image update

First, the depth image is obtained at a given time: depthImage(time). In addition, two areas of the

scene must be known in which, at said instant of time, they have different depths.

Next, the color of a pixel located in the area of the depth image that should be closer is obtained,

and also the color of another pixel in the area that should be further away: color(nearPixel),

color(farPixel).

Finally, through calculations, it is determined if the color of the pixels implies that the depth of the

pixel of the far zone is greater than the depth of the pixel of the near zone.

Figure 5.19: Comparison of the depth of two points

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 51

Rotation test

This game is an AR application in which the map can be the entire environment through 360

degrees. The virtual tanks position should be consistent as they must stay in the same place even

if the mobile device's camera has turned the other way and the tank is no longer visible. If the

mobile moves away from a virtual object, when the user returns the focus of the camera to the

place where the virtual object was, it should continue to appear there.

To analyze this behavior, a video has been provided that works as input, in which the device

manages to rotate and leave possible virtual objects placed in the scene out of focus.

At the code level, when putting a virtual tank in the real world, the TrackingState property of the

element has been analyzed. The value of this property can be Paused, Stopped, or Tracking,

depending on whether the Trackable is currently tracked. This gives us the information that a

virtual object is in the scene. Next, a certain millisecond wait is performed, after which the virtual

tank will have been left out of focus in the AR session being played.

Finally, the value of this property is evaluated again, and it is verified that it is equal to the value

obtained previously. Then it is verified that this value is Tracking, which would show us that the

virtual object still retains its properties and continues to exist even if the camera is not pointing at

it.

Figure 5.20: TrackingState check.

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 52

FTAS SCIENTIFIC PUBLICATIONS

● Samira Shirzadehhajimahmood, Wishnu Prasetya, Frank Dignum, Mehdi Dastani, An

Online Agent-based Search Approach in Automated Computer Game Testing with Model

Construction. In Proceedings of the 13th International Workshop on Automating TEST

Case Design, Selection, and Evaluation. 2022. doi.org/10.1145/3548659.3561309

● R. Ferdous, C. Hung, F. M. Kifetew, D. Prandi, A. Susi. EvoMBT. 15th IEEE/ACM

International Workshop on Search-Based Software Testing (tool competition),

SBST@ICSE 2022. doi:10.1145/3526072.3527534.

● Pastor Ricós, F. (2022). Scriptless Testing for Extended Reality Systems. In International

Conference on Research Challenges in Information Science (pp. 786-794). Springer,

Cham. doi.org/10.1007/978-3-031-05760-1_56

● Mulders, A., Valdes, O.R., Ricós, F.P., Aho, P., Marín, B., Vos, T.E.J. (2022). State Model

Inference Through the GUI Using Run-Time Test Generation. In: Guizzardi, R., Ralyté, J.,

Franch, X. (eds) Research Challenges in Information Science. RCIS 2022. Lecture Notes

in Business Information Processing, vol 446. Springer, Cham. doi.org/10.1007/978-3-031-

05760-1_32

● I. S. W. B. Prasetya, Fernando Pastor Ricós, Fitsum Meshesha Kifetew, Davide Prandi,

Samira Shirzadehhajimahmood, Tanja E. J. Vos, Premysl Paska, Karel Hovorka, Raihana

Ferdous, Angelo Susi, and Joseph Davidson. 2022. An agent-based approach to

automated game testing: an experience report. In Proceedings of the 13th International

Workshop on Automating Test Case Design, Selection and Evaluation (A-TEST 2022).

Association for Computing Machinery, New York, NY, USA, 1–8.

doi.org/10.1145/3548659.3561305

● Ansari, Prasetya, Dastani, Dignum, Keller. An Appraisal Transition System for Event-

Driven Emotions in Agent-Based Player Experience Testing. In International Workshop on

Engineering Multi-Agent Systems (EMAS), 2021. doi.org/10.48550/arXiv.2105.05589

● R. Ferdous, F. M. Kifetew, D. Prandi, A. Susi. Towards Agent-Based Testing of 3D Games

using Reinforcement Learning. 37th IEEE/ACM International Conference on Automated

Software Engineering, ASE4Games 2022.

● R. Ferdous, F. M. Kifetew, D. Prandi, I. S. W. B. Prasetya, S. Shirzadehhajimahmood, A.

Susi. Search-based automated play testing of computer games: A model-based approach.

13th International Symposium, SSBSE 2021. doi:10.1007/978-3-030-88106-1_5

● Vos, T. E., Aho, P., Pastor Ricos, F., Rodriguez Valdes, O., & Mulders, A. (2021). testar–

scriptless testing through graphical user interface. Software Testing, Verification and

Reliability, 31(3), e1771. doi.org/10.1002/stvr.1771

https://doi.org/10.1145/3548659.3561309
https://ieeexplore.ieee.org/document/9810734
https://doi.org/10.1007/978-3-031-05760-1_56
https://doi.org/10.1007/978-3-031-05760-1_32
https://doi.org/10.1007/978-3-031-05760-1_32
https://doi.org/10.1145/3548659.3561305
https://doi.org/10.48550/arXiv.2105.05589
https://link.springer.com/chapter/10.1007/978-3-030-88106-1_5
https://doi.org/10.1002/stvr.1771

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 53

● Rodríguez-Valdés, O., Vos, T.E.J., Aho, P., Marín, B. (2021). 30 Years of Automated GUI

Testing: A Bibliometric Analysis. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P.,

Pérez-Castillo, R. (eds) Quality of Information and Communications Technology. QUATIC

2021. Communications in Computer and Information Science, vol 1439. Springer, Cham.

doi.org/10.1007/978-3-030-85347-1_34

● van der Brugge, A., Pastor-Ricós, F., Aho, P., Marín, B., & Vos, T. E. (2021). Evaluating

TESTAR's effectiveness through code coverage. Actas de las XXV Jornadas de

Ingeniería del Software y Bases de Datos (JISBD 2021), 1-14.2021/JISBD/2021-JISBD-

042.pdf

● Extended abstract: Aplib: An Agent Programming Library for Testing Games, I. S. W. B.

Prasetya, Mehdi Dastani, in the International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), 2020.

● Concepts behind agent-based automated testing: Aplib: Tactical Agents for Testing

Computer Games. I. S. W. B. Prasetya, Mehdi Dastani, Rui Prada, Tanja E. J. Vos, Frank

Dignum, Fitsum Kifetew, in Engineering Multi-Agent Systems workshop (EMAS), 2020.

doi.org/10.1007/978-3-030-66534-0_2

● Ricós, F.P., Aho, P., Vos, T., Boigues, I.T., Blasco, E.C., Martínez, H.M. (2020). Deploying

TESTAR to Enable Remote Testing in an Industrial CI Pipeline: A Case-Based Evaluation.

In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification

and Validation: Verification Principles. ISoLA 2020. Lecture Notes in Computer Science(),

vol 12476. Springer, Cham. doi.org/10.1007/978-3-030-61362-4_31

● Thorn Jansen, Fernando Pastor Ricós, Yaping Luo, Kevin van der Vlist, Robbert van

Dalen, Pekka Aho, and Tanja E. J. Vos, “Scriptless GUI testing on mobile applications”,

QRS 2022, 22nd IEEE International Conference on Software Quality, Reliability, and

Security.

https://doi.org/10.1007/978-3-030-85347-1_34
https://biblioteca.sistedes.es/submissions/descargas/2021/JISBD/2021-JISBD-042.pdf
https://biblioteca.sistedes.es/submissions/descargas/2021/JISBD/2021-JISBD-042.pdf
http://ifaamas.org/Proceedings/aamas2020/pdfs/p1972.pdf
https://doi.org/10.1007/978-3-030-66534-0_2
https://doi.org/10.1007/978-3-030-61362-4_31

D3.5 – Report describing Functional Test Agents (FTAs)

WP3-D3.5 iv4XR 54

REFERENCES

[AP11] VS Alagar and K Periyasamy. 2011. Extended finite state machine. In Specification of

software systems. Springer, 105–128.

[BK08] Baier, Christel, and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[Ben08] Ben-Ari, Mordechai. Principles of the Spin model checker. Springer Science & Business

Media, 2008.

[FR+21] Ferdous, R., Kifetew, F., Prandi, D., Prasetya, I. S. W. B., Shirzadehhajimahmood, S., &

Susi, A. (2021, September). Search-Based Automated Play Testing of Computer Games: A

Model-Based Approach. In Search-Based Software Engineering: 13th International Symposium,

SSBSE 2021, Bari, Italy, October 11–12, 2021, Proceedings (pp. 56-71).

[FRK+22] Ferdous, R., Kifetew, F., Prandi, D., & Susi, A. (2022, October). Towards Agent-Based

Testing of 3D Games using Reinforcement Learning. In Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering, ASE4Games 2022, Rochester,

MI, USA, October 10–14, 2022.

[FR+22] Ferdous, Raihana, Chia-kang Hung, Fitsum Kifetew, Davide Prandi, and Angelo Susi.

"EvoMBT at the SBST 2022 Tool Competition." In 2022 IEEE/ACM 15th International Workshop

on Search-Based Software Testing (SBST), pp. 51-52. IEEE, 2022.

[Shi+21] Samira Shirzadehhajimahmood, ISWB Prasetya, Frank Dignum, Mehdi Dastani, and

Gabriele Keller. Using an agent-based approach for robust automated testing of computer games.

In Proceedings of the 12th International Workshop on Automating TEST Case Design, Selection,

and Evaluation. 2021.

[Shi+22] Samira Shirzadehhajimahmood, Wishnu Prasetya, Frank Dignum, Mehdi Dastani, An

Online Agent-based Search Approach in Automated Computer Game Testing with Model

Construction. In Proceedings of the 13th International Workshop on Automating TEST Case

Design, Selection, and Evaluation. 2022.

[TV+21] Tanja Vos, Pekka Aho, Fernando Pastor Ricós, Olivia Rodriguez‐Valdes, and Ad

Mulders. testar–scriptless testing through graphical user interface. In Software Testing,

Verification and Reliability. 2021.

[TP+22] Pierrot, Thomas, et al. "Diversity Policy Gradient for Sample Efficient Quality-Diversity

Optimization." ICLR Workshop on Agent Learning in Open-Endedness. 2022.

