

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D3.4 – Final version of Functional Test Agents (FTAs)

iv4XR – WP3 – D3.4

Version 1.10

December 2022

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR i

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2022

Actual Date 30/12/2022

Document Author/s Tanja Vos (UPV), Fernando Pastor Ricós (UPV), Borja Davó

Gelardo (UPV), Wishnu Prasetya (UU), Fitsum Kifetew (FBK),

Davide Prandi (FBK), Victor Gabillon (THA-SIX), Joseph

Davidson (GA), Pedro Fernandes (INESC-ID), Inês Carvalho

(INESC-ID), Jason Lander (GWE)

Version 1.10

Dissemination level Public

Status Final

Type OTHER

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR ii

Document Version Control

Version Date Change Made (and if appropriate reason

for change)

Initials of

Commentator(s) or

Author(s)

1.0 20/10/2022 Initial document structure and contents FP

1.1 21/11/2022 Discuss content and add tasks description TV, WP, FK, FP

1.2 9/12/2022 Add exploratory and distributed sections FP

1.3 9/12/2022
Add INESC-ID quality-diversity to Coverage

section
PF

1.4 9/12/2022
Add QR-RL coverage and multi-agent

THALES approaches
VG

1.5 9/12/2022 Add Space Engineers multi-agent section JD

1.6 9/12/2022 Add LiveSite multi-site agents section JL

1.7 13/12/2022 Add EvoMBT and RLbT sections FK

1.8 14/12/2022 Add Augmented Reality section BD, IC, FP

1.9 15/12/2022 Add LTL and Solvers sections WP

1.10 30/12/2022 Final arrangements for submission RP

Document Quality Control

Version

QA

Date Comments (and if appropriate reason for

change)

Initials of QA Person

1.9 20/12/2022 Initial comments and typo fixes ML

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR iii

1.9 25/12/2022 English grammar, sentence structure JD

Document Authors and Quality Assurance Checks

Author

Initials

Name of Author Institution

TV Tanja Vos UPV

FP Fernando Pastor UPV

BD Borja Davó UPV

WP Wishnu Prasetya UU

FK Fitsum Kifetew FBK

DP Davide Prandi FBK

VG Victor Gabillon THA-SIX

JD Joseph Davidson GA

PF Pedro M. Fernandes INESC-ID

IC Inês Carvalho INESC-ID

JL Jason Lander GWE

ML Manuel Lopes INESC-ID

RP Rui Prada INESC-ID

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR iv

TABLE OF CONTENTS

Executive Summary 1

Acronyms and Abbreviations 1

Overall concepts, architecture, design of Functional Test Agents (FTAs) 2

Task 3.1: Specifying Tests 3

Task 3.2: Goal Solving Agents 5

Task 3.2: Exploration Agents 8

Task 3.3: Dealing with Hazardous Elements 10

Task 3.4: Coverage 10

Task 3.5: Multi Agent Testing 15

Task 3.6: Integration 18

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 1

EXECUTIVE SUMMARY

This deliverable D3.4 is of type OTHER, it describes the progress made in the final year related

to the Functional Test agents (FTAs). The real delivery is the software that is available on the

iv4XR GitHub repository: https://github.com/iv4xr-project

In this deliverable, we will summarize the overall concepts, architecture, design, and technical

choices. With the intent to give a clear overview for the reviewers of the work that has been done

in WP3, we will describe per task:

● Short introduction to the task.

● What has been done in the last year.

● Where the result can be found (link to GitHub, Zenodo, videos) and how to use them.

ACRONYMS AND ABBREVIATIONS

FTA Functional Test Agent

SUT System Under Test

XR Extended Reality

AI Artificial Intelligence

WOM World Object Model

API Application Programming Interface

RL Reinforcement Learning

DRL Deep Reinforcement Learning

DSL Domain Specific Language

TSL Test Specification Language

LTL Linear Temporal Logic

MDP Markov Decision Process

MBT Model Based Testing

ASM Action Selection Mechanism

AR Augmented Reality

QDRL Quality-Diversity Reinforcement Learning

https://github.com/iv4xr-project

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 2

OVERALL CONCEPTS, ARCHITECTURE, DESIGN OF FUNCTIONAL TEST AGENTS

(FTAS)

Figure 1: Different types of Test Agents in iv4XR.

We distinguish between four sub-types of FTAs in WP3, of which three of them follow similar

exploratory capabilities:

● The first type of agent makes deliberations to choose appropriate strategies to allow it to

solve goals (Goal-solving TA circle in Figure 1).

● The second type of agent does not follow specific goal structures but learns from the

executed goal interactions to verify if it is possible to achieve a final state (RL section from

Explorative TA circle in Figure 1).

● The third type of agent explores the XR environment with a Scriptless approach while

verifying if the system is robust enough to respond to multiple and unexpected user

interactions (TESTAR section from Explorative TA circle in Figure 1).

● The fourth type of agent can follow the space of interactions that are abstractly

represented in a model to cover all the transitions (MBT section from Explorative TA circle

in Figure 1).

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 3

These FTAs are able to test the SUTs from WP5, by using the Framework-Core from WP2, as

is also shown in Figure 1.

TASK 3.1: SPECIFYING TESTS

Short
introduction
to the task

This task aims to develop a Test Specification Language (TSL) that would allow

developers to abstractly specify complex testing tasks.

This Deliverable 3.4 focuses on the TSL improvements made in the last year of

the project, while Deliverable 3.5 details the usage of the TSL for the FTAs of

the iv4XR framework.

What has
been done
in the last
year

● Linear Temporal Logic extension

An LTL formula is a predicate over sequences of states, allowing us to capture a

requirement over a whole execution rather than just a requirement over some

states. For example, applying LTL predicates on an example game as the SUT,

we can check that the total amount of points collected by the agent/player during

a certain test scenario should never exceed some upper bound N.

We collaborated with the socio-emotional agents team from WP4 to extend the

usage of LTL predicates to allow designers to specify the emotion-based user

experiences, such as fear, hope, and joy, that the agents need to verify over time

and space.

● Specifying tests for Augmented Reality systems

The Espresso testing framework, which allows realizing user interactions with

mobile devices, has been integrated within the iv4xr framework to enable the

declaration of tactics and goals by using the TSL. This allows stakeholders to

formulate the declarative goals that the agents follow to test the virtual

characteristics of Augmented Reality (AR) systems.

Where are
these
results and
how to use
them

User Documents. The Test Specification Language is actually part of the DSL
for formulating goals and tactics for agents, so they share the same underlying
concepts. More on the concepts of iv4xr agent programming can be found in its
Documentation page:

https://github.com/iv4xr-project/aplib/blob/master/README.md

User Reference.

1. The syntax of the DSL test specification language:
https://github.com/iv4xr-project/aplib/blob/master/docs/manual/DSL.md

2. APIs Reference is provided as part of the APIs reference of the
Framework-core: :

https://github.com/iv4xr-project/aplib/blob/master/README.md
https://github.com/iv4xr-project/aplib/blob/master/docs/manual/DSL.md

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 4

http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/a
pidocs/

The key classes implementing the DSL are AplibEDSL and iv4xrEDSL in
the package nl.uu.cs.aplib and eu.iv4xr.framework. The implementation
of LTL can be found in the class LTL and its subclasses in the package
eu.iv4xr.framework.extensions.ltl. We also provide an extension of LTL
called Bounded-LTL, which can be found in the class BoundedLTL in the
same package.

3. An extension of the LTL from the Framework Core that is more
specialized for expressing user experience can be found here:
https://github.com/iv4xr-project/ltl-pxevaluation

4. Augmented Reality demo project
https://github.com/iv4xr-project/iv4ARDemo/tree/tests

Usage Examples
1. A starting (simple) example of using the DSL is provided in the above

Documentation page of the Framework. Direct link:
https://github.com/iv4xr-
project/aplib/blob/master/docs/iv4xr/testagent_tutorial_1.md

2. Examples of the use of LTL are provided in the above Documentation
page of the Framework. Direct link:
https://github.com/iv4xr-
project/aplib/blob/master/docs/iv4xr/testagent_tutorial_3.md

3. A full example in the context of a realistic SUT can be found as part of
the iv4xrDemo project that demonstrates the use of iv4xr to test a 3D
maze-puzzle game. The Demo project can be found here:
(https://github.com/iv4xr-project/iv4xrDemo. Look for example in the
test-example src/test/java/agents/demo/RoomReachabilityTest.java.

Implementation.
The Test Specification Language is part of the Framework-core, which can be
obtained here: https://github.com/iv4xr-project/aplib

For inspecting the code, the key classes that implement the DSL are AplibEDSL
and iv4xrEDSL. The implementation of LTL and Bounded-LTL can be found in
the classes LTL and BoundedLTL.

Publications:
Aplib: Tactical Agents for Testing Computer Games. Paper by Prasetya, Dastani,
Prada et al. Published in EMAS 2021
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2

http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
https://github.com/iv4xr-project/ltl-pxevaluation
https://github.com/iv4xr-project/iv4ARDemo/tree/tests
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_1.md
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_1.md
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_3.md
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_3.md
https://github.com/iv4xr-project/iv4xrDemo
https://github.com/iv4xr-project/aplib
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 5

TASK 3.2: GOAL SOLVING AGENTS

Short

introduction

to the task

This task aims to develop agents that follow test-related goals to automatically

navigate to certain locations in a virtual world that contains the entities that must

be tested. These goals are composed of testing tasks consisting of a sequence

of high-level steps followed by an assertion of the correctness condition to

check. Each high-level step is essentially a goal for the test agent, which needs

to be solved by the agent to accomplish the testing objective. The following

types of solvers are being developed in T3.2:

● Graph-based pathfinding and exploration algorithm. A pathfinding

algorithm is used to auto-navigate from one location to another and

complete the testing task.

● Reasoning-based solver by using Prolog which allows reasoning rules

to be formulated, thus allowing a running agent to use them for making

decisions.

● Model checker solvers. This kind of solver can solve a goal provided

a LTL bounder model checker M is given.

● Online solvers. An online solver tries to solve a goal by actually trying

different interactions on the SUT, by following a certain heuristic without

the need of a model.

● Learning algorithm. Developers can express a SUT-specific problem

as an environment for Reinforcement Learning by formalizing it as a

Markov Decision Process (MDP) with states, actions, and rewards.

Then, a Deep Reinforcement Learning (DRL) agent can be used to

solve the SUT-specific goal.

This Deliverable 3.4 focuses on the goal solver improvements and summarizes

the new AR development made in the last year of the project. Then Deliverable

3.5 details all the solver capabilities that goal-solving agents provide to the

iv4XR framework and extends the AR agent capabilities.

What has
been done
in the last
year

● Model checker solvers. An LTL model checker has been implemented

for iv4xr. It implements a similar double DFS algorithm as in the SPIN

model checker1, however unlike SPIN, our model checker is a bounded

model checker (BMC) and hence can deal with unbounded state space.

A decided to implement our own LTL BMC tool to facilitate better

integration with the rest of the Framework modules. As far as we know

ours is the only LTL BMC implementation in Java.

1 https://spinroot.com/spin/whatispin.html

https://spinroot.com/spin/whatispin.html

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 6

● Online solvers. Online solvers have been extended with a new

systematic algorithm that allows agents to autonomously explore a level

to complete all the high-level transitions (basic goals) that compose the

complete goal structure. Using this approach, the agent requires more

time to explore the XR level, but the developer no longer needs to

specify how to solve all the composed transitions of a goal.

● Goal-solving agents for Augmented Reality systems. The extension

of the iv4xr framework with the Espresso testing framework allows the

usage of goal-solving FTAs to test different characteristics of AR

systems. These agents can observe the environment of different SUTs

based on the Google ARCore software development kit to obtain the

WOM and to test that the surface position, the orientation of the entities,

or the collision between them are correct when objects are placed.

● Applying RL solver to MAEV scenario. We worked on scaling the TD3

algorithm from small mazes with a small number of guards in the

guarding patrol to larger mazes with a larger number of guards. We

reached an almost 100% successful intrusion strategy in the final

environment, that is the powerplant use case with the SE-STAR

simulator. Our techniques to enable the scaling involved reward-shaping

and curriculum learning. When transferring the strategy to the MAEV

simulator (more realistic than SE-STAR) we noticed that the strategy

would only have a success rate of 50%.

Where are

these

results and

how to use

them

● Graph-based pathfinding, Reasoning-based, Model checker and

Online solvers are implemented in the Framework-core. The

Framework-core can be obtained here:

https://github.com/iv4xr-project/aplib

Documentation and tutorials that helps for the integration and usage of

solvers can be found here:

https://github.com/iv4xr-

project/aplib/blob/master/docs/agentprogramming.md

https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/solvers.md

● Agent-based approach that contains goal solving FTAs

publication:

I. S. W. B. Prasetya, Fernando Pastor Ricós, Fitsum Meshesha Kifetew,
Davide Prandi, Samira Shirzadehhajimahmood, Tanja E. J. Vos,
Premysl Paska, Karel Hovorka, Raihana Ferdous, Angelo Susi, and
Joseph Davidson. An agent-based approach to automated game
testing: an experience report. In Proceedings of the 13th International

https://github.com/iv4xr-project/aplib
https://github.com/iv4xr-project/aplib/blob/master/docs/agentprogramming.md
https://github.com/iv4xr-project/aplib/blob/master/docs/agentprogramming.md
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/solvers.md

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 7

Workshop on Automating Test Case Design, Selection and Evaluation
(A-TEST 2022).

https://doi.org/10.1145/3548659.3561305

● Online solver approach publication:

Samira Shirzadehhajimahmood, Wishnu Prasetya, Frank Dignum,

Mehdi Dastani, An Online Agent-based Search Approach in Automated

Computer Game Testing with Model Construction. In Proceedings of

the 13th International Workshop on Automating TEST Case Design,

Selection, and Evaluation. 2022.

https://zenodo.org/record/7230140#.Y5ulhOzMIUp

● The iv4XR plugin for defining Reinforcement Learning environments

with the SUT as well as the Python connector for DRL Agents and the

implementation of the TD3 algorithm as a goal solver are available in

the GitHub repository:

GitHub - iv4xr-project/iv4xrl: iv4XR RL Environment library

Details about the approach and illustrations of usage are available in the

README and Wiki

● Augmented Reality demo project
https://github.com/iv4xr-project/iv4ARDemo/tree/tests

https://doi.org/10.1145/3548659.3561305
https://zenodo.org/record/7230140#.Y5ulhOzMIUp
https://github.com/iv4xr-project/iv4xrl
https://github.com/iv4xr-project/iv4ARDemo/tree/tests

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 8

TASK 3.2: EXPLORATION AGENTS

Short

introduction

to the task

The open-source TESTAR tool takes an exploratory FTA role within the iv4xr

framework. This FTA does not follow specific goals or crafted models to interact

with and test the XR system. TESTAR executes non-sequential actions to test

that the System Under Test (SUT) and its functional aspects are robust enough

to respond to different and unexpected user interactions.

TESTAR is a tool that existed previous to the project to test Graphical User

Interface (GUI) systems, and that has been extended with the iv4XR plugins to

observe the SUT states, execute actions and apply oracles. Deliverables 3.2

and 3.3 explained the work done in the first and second years of the project,

respectively. This Deliverable 3.4 focuses on the new developments and

improvements made in the last year of the project, while Deliverable 3.5 details

the final integration as an exploratory agent within the iv4XR framework.

What has
been done
in the last
year

1. The extension of the State classes was already implemented in TESTAR to

allow the tool to use the WOM information of the plugin to fetch the Widgets and

States that are used to derive actions and apply oracles. This last year, these

classes have been updated with the new versions of the iv4XR plugins, which

allows the TESTAR tool to obtain additional properties of the virtual entities and

create new states of the existing terminals of some XR systems, as in the case

of Space Engineers (SE).

2. Regarding the Actions that TESTAR is capable of deriving and executing,

this last year, the effort was mainly focused on improving the navigability aspect

of the movements for the SE system. This allows the agent to realize a long and

robust exploration of the SUT by reaching the entities to test while dealing with

obstructive elements.

This navigation improvement, together with the changes made that include a

new set of properties in the different types of widgets, have allowed the

definition of a new set of actions focused on testing functional aspects of the

XR system (e.g., test that all the medical rooms restore the agent's health, that

all cryo chambers restore agent's energy, etc.)

3. Due to the importance of testing the functional aspect of the virtual entities in

XR systems, a new set of Oracles that test functional robustness were

included in the TESTAR tool. These new oracles focused on testing the

functional aspects of the SE environment allowed us to verify that an exploratory

FTA approach can detect existing documented bugs.

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 9

Where are

these

results and

how to use

them

● The wiki section of the TESTAR_iv4xr GitHub repository contains

detailed information regarding the technical extension and instructions

to download and use the tool.

https://github.com/iv4xr-project/TESTAR_iv4xr/wiki

● Videos are here:

a. TESTAR usage instructions

i. https://www.youtube.com/watch?v=WxMFVnh5Uso

b. TESTAR for LabRecruits

i. https://www.youtube.com/watch?v=st4FL_mMflE

ii. https://www.youtube.com/watch?v=3T4v3STVMVU

c. TESTAR for Space Engineers

i. https://www.youtube.com/watch?v=C-y-jV82K50

ii. https://www.youtube.com/watch?v=ho1EMVtr8C4

● Published papers in the third year are:

a. Mulders, A., Valdes, O.R., Ricós, F.P., Aho, P., Marín, B., Vos,

T.E.J. (2022). State Model Inference Through the GUI Using Run-

Time Test Generation. In: Guizzardi, R., Ralyté, J., Franch, X. (eds)

Research Challenges in Information Science. RCIS 2022. Lecture

Notes in Business Information Processing, vol 446. Springer, Cham.

https://doi.org/10.1007/978-3-031-05760-1_32

b. Pastor Ricós, F. (2022). Scriptless Testing for Extended Reality

Systems. In: Guizzardi, R., Ralyté, J., Franch, X. (eds) Research

Challenges in Information Science. RCIS 2022. Lecture Notes in

Business Information Processing, vol 446. Springer, Cham.

https://doi.org/10.1007/978-3-031-05760-1_56

c. Thorn Jansen, Fernando Pastor Ricós, Yaping Luo, Kevin van der

Vlist, Robbert van Dalen, Pekka Aho, and Tanja E. J. Vos, Scriptless

GUI testing on mobile applications, QRS 2022, 22nd IEEE

International Conference on Software Quality, Reliability, and

Security. (pending to be published)

https://github.com/iv4xr-project/TESTAR_iv4xr
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki
https://www.youtube.com/watch?v=WxMFVnh5Uso
https://www.youtube.com/watch?v=st4FL_mMflE
https://www.youtube.com/watch?v=3T4v3STVMVU
https://www.youtube.com/watch?v=C-y-jV82K50
https://www.youtube.com/watch?v=ho1EMVtr8C4
https://doi.org/10.1007/978-3-031-05760-1_32
https://doi.org/10.1007/978-3-031-05760-1_56

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 10

TASK 3.3: DEALING WITH HAZARDOUS ELEMENTS

Short

introduction

to the task

Hazardous entities are entities in the virtual world that may block or even

sabotage an agent’s progress or even cause it to fall into an inescapable stuck

state. To deal with them the agent needs to be actively aware of their threat

and apply countermeasures.

What has
been done
in the last
year

We made a study on how to program tactics for test agents to deal with

enemies. In general, the approach works by extending regular tactics (e.g.

tactics for traveling/navigating) with tactics that handle enemies. The latter is

used to, for example, handle combat as well acquiring items that would improve

the agent’s survival. A master thesis describing the study can be found in the

results row.

Where are

these

results and

how to use

them

● LabRecruits tactic library: https://github.com/iv4xr-

project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.j

ava

● Latos, Anastasios. (2022). Automated Playtesting on 2D Video Games

An Agent-Based Approach on NethackClone Game via Iv4XR

Framework. https://studenttheses.uu.nl/handle/20.500.12932/510

TASK 3.4: COVERAGE

Short
introduction
to the task

This task aims to measure the coverage of the tests to see how good they
are in exercising the system under test (SUT). Furthermore, the FTA's
functionality is enhanced to increase its efficacy in achieving higher levels of
coverage.

The activities in this task are focused along two main lines: 1) define
reasonable metrics for measuring coverage on which different notions of
coverage have been explored for the WP5 use cases, and 2) develop test
generation strategies that increase the coverage obtained from the tests, on
which different approaches based on search as well as reinforcement
learning have been explored.

This Deliverable 3.4 focuses on the new developments and improvements

made in the last year of the project, while Deliverable 3.5 details the final

coverage approaches integrated into the FTAs and Deliverable 5.4 their

validation in the project use cases.

https://github.com/iv4xr-project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.java
https://github.com/iv4xr-project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.java
https://github.com/iv4xr-project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.java
https://studenttheses.uu.nl/handle/20.500.12932/510

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 11

What has
been done in
the last year

● EvoMBT

EvoMBT applies a combination of model based and search based testing

approaches for generating tests for XR based systems. In the last year,

EvoMBT has been improved by adding a new coverage criterion, i.e., k-

transition coverage, which allows the generation of test cases that are more

thorough with respect to the functionalities of the system they exercise.

Furthermore, EvoMBT has been improved to support the possibility to use an

externally built model, conforming to the interface provided by EvoMBT, for

the generation of test cases. It also supports more search algorithms for the

generation of test cases. The tool documentation has been significantly

improved, including a wiki that details how to instantiate and use the tool

complete with working examples. To assess empirically the effectiveness of

different search algorithms, we have carried out a large scale experimental

study comparing the performances of the algorithms on a large number of

models with different characteristics. The results have been submitted to the

TOSEM (ACM Transactions on Software Methodology) Journal.

Furthermore, EvoMBT also took part in a tool competition in which it was

applied for generating tests for self-driving cars.

● RLbT

In contexts where models of the system under test are not available, iv4xr

has developed tools that perform testing applying different techniques. One

of these is the RLbT tool which makes use of multi-agent reinforcement

learning to test the system. In the last year of the project, RLbT

implementation has been completed with support for applying multiple agents

running in a collaborative manner to achieve effective testing of the system.

RLbT reports coverage of elements it was able to interact with in the

environment as well as the percentage of connections between elements

exercised. Furthermore, it also produces the sequence of successful actions

performed by the active agent for later re-execution. Finally, spatial coverage

of the environment is also reported by means of a heatmap plot showing the

positions the agent has been at and with what frequency. The RLbT approach

and initial results have been presented at the ASE4GAMES workshop, an

event dedicated to works on the applications of automated software

engineering techniques to development and testing of games.

● Area-based coverage

Test agents can be configured to record properties of the SUT states into

trace files. Such a trace file would then contain values of these properties

over time, as the agent progresses in its execution. Among these properties

we can also include the agent’s positions. Based on this information, it is then

possible to calculate how well the runs of a test suite cover different areas in

the SUT’s virtual world.

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 12

To do this, we extended the implementation of LTL in iv4xr with the concept

of “areas”, so that we can then infer, from a trace file of a test agent, which

areas were visited by the agent, and where exactly in the area it visited. To

be able to calculate the coverage over some or all areas, LTL is extended

with an aggregation semantic. More details can be found in the

implementation of the extended LTL; a link is provided in the next row of this

table.

● Spatial coverage

Some systems, such as SE, employ files to store the configuration of the

existing scenarios on which the FTAs execute the testing process. The

agents can compare the information obtained while observing the

environment at runtime with the file data that contains information regarding

the position of the entities to obtain spatial coverage metrics that indicate the

number and percentage of observed and interacted blocks and navigated

positions.

● Code coverage

We have been integrating open-source code coverage tools to obtain metrics

that indicate how the FTA interactions realized with the virtual entities invoke

the different internal methods that compose the code of XR systems. Due to

these systems can be developed with various programming languages, it was

necessary to research the feasibility of multiple tools such as Unity

framework2, OpenCover3, or dotCover4.

● Thales QDRL

Quality-Diversity Reinforcement Learning (QDRL) is a meta-algorithm built

on top of another base RL algorithm which in our case was TD3. Our work

this year went two ways. First, we worked on making sure TD3 would

successfully solve the original set of maze problems. This was successfully

achieved with curriculum learning. For the QDRL algorithm we played with

different metrics for diversity. Finally, we settled for an averaged through time

Euclidean distance of the respective trajectories of each agent. Going beyond

a deterministic scenario, we now train our agent against multiple patrol

strategy patterns.

We successfully trained the method in medium size mazed with up to 3

guards. However, the method did not converge when trained on the

powerplant scenario.

2 Unity code coverage: https://docs.unity3d.com/Packages/com.unity.testtools.codecoverage@1.1
3 OpenCover: https://github.com/OpenCover/opencover
4 dotCover: https://www.jetbrains.com/dotcover/

https://docs.unity3d.com/Packages/com.unity.testtools.codecoverage@1.1
https://github.com/OpenCover/opencover
https://www.jetbrains.com/dotcover/

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 13

● Quality-Diversity Optimisation for Testing Space Engineers

In the game Space Engineers, one of the pilots of the iv4XR project, there

exist many different types of blocks, which can be placed and interacted with

in many different ways. The placement of blocks next to one another can also

change their properties, which makes the task of testing the interactions with

these blocks a complex one. One of the biggest problems is ensuring relevant

coverage of the interaction space when the amount of blocks and their

possible combinations makes it infeasible to test every scenario.

To tackle this problem, we developed a tool for action generation for two

players that promotes diversity for groups of sequences of actions in a given

Space Engineers scenario. By implementing a version of the Quality-Diversity

optimisation algorithm to generate grids of action sequences, our tool has

shown to be capable of creating grids with very good total diversity values,

ensuring that various interactions are covered and that redundant testing is

minimized.

In order to evaluate the bug detection capabilities of this tool, we created a

game simulator, accompanied by a bug generator, where the actions from

the grid are performed and generate the expected outcomes that would be

generated in the real game. Our results showed that the framework is capable

of detecting a good number of single-player bugs as well as multiplayer bugs.

Where are
these results
(paper, github,
etc)

● The combined application of model-based and search-based test
generation for maximizing coverage has been presented at the 13th
Symposium on Search-Based Software Engineering (SSBSE). The
data and replication material accompanying the publication are
available in the project Zenodo repository:
https://zenodo.org/record/5140432

● The EvoMBT tool source code is available in the project github
repository, together with all the necessary resources and
documentation to execute it:
https://github.com/iv4xr-project/iv4xr-mbt

● The use of reinforcement learning for curiosity driven coverage testing
has been presented at the ASE4GAMES workshop co-located with
the International Conference on Automated Software Engineering
(ASE). The publication is available in the project Zenodo repository:
https://zenodo.org/record/7224960

● The RLbT tool source code is available in the project github
repository, together with all the necessary resources and
documentation needed to execute it:
https://github.com/iv4xr-project/iv4xr-rlbt

https://zenodo.org/record/5140432
https://github.com/iv4xr-project/iv4xr-mbt
https://zenodo.org/record/7224960
https://github.com/iv4xr-project/iv4xr-rlbt

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 14

● The implementation of reinforcement learning for test generation
applied to Lab Recruits is also available in the project github
repository:
https://github.com/iv4xr-project/iv4XR-FTA-RL

● The implementation for calculating area-coverage can be found here:
https://github.com/iv4xr-project/ltl-pxevaluation

● The implementation of the QD-RL algorithm for behavioral coverage
is available in the github repository:
GitHub - iv4xr-project/iv4xrl: iv4XR RL Environment library
Details about the approach and illustrations of usage are available in
the project README and Wiki

● The implementation of the quality-diversity optimisation tool design for
testing block interactions in Space Engineers can be found in the
github repository:
https://github.com/iv4xr-project/se-action-grid-generator

How can they
evaluate/use
these results
(what is there
and what
should they
do to evaluate
or use it)

● Usage instructions for the EvoMBT tool are detailed in the wiki:
https://github.com/iv4xr-project/iv4xr-mbt/wiki
Moreover, EvoMBT provides help on the various options available at
runtime, suffices to simply run the tool without any parameters and a
help page should be displayed.

● EvoMBT performs:
○ Coverage driven abstract test generation from a given EFSM

model
○ Concretization of the abstract tests and execution on the

system under test (Lab Recruits, SpaceEngineers)
○ Mutation analysis of the generated tests to assess their fault

finding potential.

● Experimental results are available from our Zenodo repository:
https://zenodo.org/record/4769901

https://github.com/iv4xr-project/iv4XR-FTA-RL
https://github.com/iv4xr-project/ltl-pxevaluation
https://github.com/iv4xr-project/iv4xrl
https://github.com/iv4xr-project/se-action-grid-generator
https://github.com/iv4xr-project/iv4xr-mbt/wiki
https://zenodo.org/record/4769901

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 15

TASK 3.5: MULTI AGENT TESTING

Short
introduction
to the task

The simultaneous interaction of multiple users in the same environment is an

essential feature of XR systems. It is important to verify the correct interaction

of multiple users since they can influence each other. This task is focused on

extending the iv4XR framework to allow multiple agents to communicate and

realize simultaneous interaction in runtime. There are two main objectives for

this task:

- Allow the definition of test cases that involve simultaneous interactions,

collaboration, or confrontation of multiple agents.

- Research the integration of Reinforcement learning (RL) algorithms and

strategies that diversify the agent's workload and speed up the exploratory

and training procedures.

Deliverable 3.3 explained the multi-agent development done in the project's

second year. This Deliverable 3.4 focuses on the new multi-agent

improvements made in the last year of the project. Then, Deliverable 3.5

contains an overall vision of the FTAs and Deliverable 5.4 their validation in the

project use cases.

What has
been done
in the last
year

● Multi-agent RL with Lab Recruits

One of the tools developed for generating test cases is RLbT which uses

reinforcement learning to explore the system with the purpose of maximizing

coverage of the system. RLbT can be run in multi-agent mode where it deploys

a couple of agents that work in a collaborative manner, inline with the second

objective stated above. In multi-agent mode, RLbT deploys an active agent that

is guided by a curiosity-driven reward mechanism to explore the system and

produce a set of actions that cover the various elements in the system as well

as functional aspects such as the connection between doors and buttons, for

example. To help the active agent, RLbT deploys another passive agent that is

responsible for scouting the environment and reporting its observations to the

active agent. This enables the active agent to be aware of the effects of its

actions in an efficient way, especially in systems where the environment is large

and complex. For instance, in Lab Recruits where a button in one room could

open a door in another room, the fact that there is a second agent, possibly far

from the active agent, allows us to observe changes to the environment

triggered by the actions of the active agent.

The RLbT multi-agent approach is currently applied on Lab Recruits, exploiting

its multiplayer feature. However, it could be applied to similar systems that

support multiple players.

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 16

● Thales Diversity multi-agent RL

With its Diversity RL approach, Thales has trained multiple agents, each agent

interacts in its own environment but is guided by reward that depends on the

interaction of other agents in their respective environment.

The adapted QD-RL algorithm also manages the evolution of the agent

population to have them explore the state space efficiently, thanks to the

diversity criterion that emphasizes the difference between two agents’

trajectories.

We manage our multi-agent by storing them in an archive of agents and

constantly selecting the ones that are the most promising either in terms of

performance or in terms of originality of their strategy (diversity).

● SE multi-agent approaches

Space Engineers is a multiplayer game that allows a large group of clients to

connect to a hosted server to play. In order to verify that the host server and the

running level respond correctly to multiple agent interactions, the multi-

character and multiplayer extensions were developed.

The multi-character feature allows the SE stakeholders to create basic tests to

spawn “NPC” agents in one SE client to assign them tactics and goals that

execute actions while asserting that the entity's features respond adequately.

On the one hand, this feature requires less hardware resources because the

testing is done in one SE instance. However, on the other hand, these NPCs

are not client independent and capable as the “player” agent because the usage

of some tools and the execution of some actions are restricted to the status of

the player agent.

The multiplayer extension has been developed to emulate the testing

environment of the developers with more fidelity by allowing the execution of

multiple “player” agent instances simultaneously, which requires more hardware

resources because each multi-agent runs in its own SE client. This extension

allows SE stakeholders to prepare tests that synchronize the observation of the

entity's properties over the network to verify the correctness of the system in

two types of multiplayer connections: Lobby, when a player hosts the scenario,

and a Dedicated Server (DS) with the scenario.

● GWE multi-sites agents

LiveSite is a complex real-time instrumentation and monitoring system broken

down into denominated sub-sites, each with its hosting server that connects to

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 17

the sensors for that area. The multi-agent approach allows triggering multiple

agents for each sub-site, which can further analyze the sensors at that sub-site.

Until the final integration phase, the LiveSite testing was performed on mirrors

of monitoring servers to ensure no disruption to actual monitoring systems

happened. For this reason, during this last year, the multi-site testing agent

approach was wholly integrated into LiveSite as a Diagnostics and warning

module. Simple summaries of errors are then made available, highlighting

problems at each sub-site.

The testing is performed with multiple instances, with each being given

assigned tasks within the overall testing of a project. Although tasks are given

to the agent in a hierarchical manner, sometimes a sub-task is more

intensive/time-consuming than the parent task which requested it. For this

reason, it has been optimized how tasks are broken down, terminated after

partial completion, and then restarted and canceled. If a sensor is deemed

invalid for some reason (such as no power going to the hub to which the sensor

is connected), checking the sensor in more detail is a waste of bandwidth.

● TESTAR distributed approach

The TESTAR agent could infer a State Model while exploring the SUT.

However, this inference process was restricted to one model per TESTAR

instance, which requires the execution of a large number and takes a long

execution time. Multiple TESTAR instances can now connect to a centralized

state model to share the knowledge of the observed environment. This is

possible due to the usage of the same abstraction mechanism used in TESTAR

to identify states and actions using the widget properties. A new Action

Selection Mechanism (ASM) allows all TESTAR instances to coordinate their

action selection by marking the target actions they pretend to execute.

Where are
these
results and
how to use
them

● Multi-agent RL with Lab Recruits
https://github.com/iv4xr-project/iv4xr-rlbt

● SE multi-character and multiplayer documentation:
https://github.com/iv4xr-project/iv4xr-se-
plugin/blob/main/JvmClient/docs/Multiple-Characters.MD

https://github.com/iv4xr-project/iv4xr-se-
plugin/blob/main/JvmClient/docs/Multiplayer.MD

● TESTAR distributed approach:
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki/TESTAR-iv4xr-
distributed

https://github.com/iv4xr-project/iv4xr-rlbt
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/docs/Multiple-Characters.MD
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/docs/Multiple-Characters.MD
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/docs/Multiplayer.MD
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/docs/Multiplayer.MD
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki/TESTAR-iv4xr-distributed
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki/TESTAR-iv4xr-distributed

D3.4 – Final version of Functional Test Agents (FTAs)

WP3-D3.4 iv4XR 18

TASK 3.6: INTEGRATION

Short

introduction

to the task

In this task, we integrate the software module that conforms to the FTAs within

the iv4XR framework from WP2 to interact and test WP5 use cases.

What has
been done in
the last year

The stakeholders involved in WP3 have been working in consonance with

WP2, WP4, and WP5 stakeholders, to develop a framework that documents

and integrates the features of the FTAs by following the Overall concepts,

architecture, design of Functional Test Agents (FTAs).

Where are

these results

and how to

use them

● The iv4XR framework repository that contains documentation and

examples of how FTAs are integrated is available in the following:

https://github.com/iv4xr-project/iv4xr-framework

https://github.com/iv4xr-project/iv4xr-framework

