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EXECUTIVE SUMMARY 

This document describes the iv4xr Framework. It starts by giving an overview of the Framework, 

its top level architecture and its main components. The document then focuses on the Framework 

Core part, as the other main components are described in other Deliverables. In this document 

we will also focus on a more conceptual presentation of the Framework Core. The GitHub-pages 

of respectively the Framework and the Framework Core provide instructions and further 

documentation on their usage. 

 

Document overview.  

● Section 1 gives an introduction. Section 2 gives a brief overview of related work. 

● Section 3 explains the execution model of iv4xr agents and some basics about their 

automated navigation and exploration feature. 

● Section 4 explains the concept of tactics and goals. These are key concepts for iv4xr test 

agents. 

● Section 5 presents different types of assertions/specifications that iv4xr agents can check 

and mentions the kind of output the test agents produce. 

● Section 6 discusses dynamic goals, which are essential to build smarter test agents. 

● Section 7 briefly discusses how to deploy iv4xr into the testing setup of some system under 

test. 

● Section 8 presents some selected results of our study on agent-based tests produced by 

iv4xr. 

● Finally, Section 9 gives a conclusion. 

SECTION 1 - INTRODUCTION 

With Extended Reality (XR) Systems we refer to software applications that involve the use of 

visual virtual worlds, ranging from computer games, 3D simulators, to virtual reality (VR) and 

augmented reality (AR) applications. XR systems are on the rise: the hardware is improving, there 

is a steady stream of innovations to feed the market, and there is push from companies like Meta 

that seek to popularize XR systems. This also means that XR systems are also becoming more 

complex, e.g., modern computer games and 3D simulators improve realism and user experience 

by allowing users to have fine grained control/interactions. A downside of this development is that 

it becomes increasingly difficult to test these systems. 

 

For example, to test that an XR system would maintain a specified correctness invariant of a 

certain family of states, the tester will first need to operate the application to bring it to at least one 

such state. This often requires a long series of fine grained interactions with the system. Only 

then the tester can check if the said invariant does hold in that state. Such a test is hard, error-

prone, and fragile to automate. Consequently, developers resort to slow, expensive, and biased 

manual testing. Considering that the industry is worth over 100 billion USD, speeding up testing 

by automating it is a need that cannot be ignored. 
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As indicated above, a common test related task is to bring the system under test (SUT) to a certain 

state of interest (we can call this a goal state), either because we want to check if the state is 

reachable and correct, or because we need to do a specific action on this state that is required 

for the given test scenario. In principle this task is a search problem: given a search space with a 

certain structure, find at least one element of the space satisfying certain properties. There are 

indeed algorithms for solving such a problem. However, in the context of XR, the problem is very 

challenging. For example a computer game often employs randomness and it often consists of 

many entities that interact with each other and with the user. Some interactions might be 

cooperative while others can be adversarial. These and other factors lead to a vast and fine 

grained search space which is hard to deal with using existing automated testing techniques such 

as search based [Min04], model based [Net+07], or symbolic [Ana+13,SA06]. At least, directly 

applying these techniques would be futile. 

 

The key to handling such a space is to have an approach that enables the programming of domain 

reasoning to express which parts of the search space are actually relevant to consider, and 

likewise what kinds of plans (for reaching given goal states) are needed. This allows the 

underlying test engine to focus its search on the parts of the interaction and plan spaces that 

semantically matter. Iv4xr Framework offers such an approach. The Framework offers a set of 

automated testing tools, but these tools are based on an agent programming core. This has been 

a deliberate choice, as in agent-based approaches autonomous distributed planning and 

reasoning based interactions with environments are present as first class features.  

 

The agent-based core of iv4xr Framework (which we will often refer to as the Framework Core) 

is a Java library for programming intelligent agents suitable for carrying out complex testing tasks. 

They can be used in conjunction with Java testing frameworks such as JUnit, e.g. to collect and 

manage test verdicts. Figure 1 shows a 3D game we use as a pilot where an iv4xr agent was 

used to automate test scenarios/tasks. The Framework Core features BDI (Belief-Desire-Intention 

[Her+17] ) agents and adds a novel layer of tactical programming that provides an abstract way 

to exert control on agents' behavior. Declarative reasoning rules express when actions are 

allowed to execute. Although in theory just using reasoning is enough to find a solution (a plan 

that would solve the given goal state) if given infinite time, such an approach is not likely to be 

computationally efficient. For testing, this matters as no developers would want to wait for hours 

for their test to complete. The tactical layer allows developers to program an imperative control 

structure over the underlying reasoning-based behavior, allowing them to have greater control 

over the search process. So-called tactics can be defined to enable agents to choose and 

prioritize their short term actions and plans, whereas longer term strategies are expressed as so-

called goal structures, specifying how a goal can be realized by choosing, prioritizing, sequencing, 

or repeating a set of subgoals. 
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Fig. 1: A game-level under development in Unity. Unity is a game engine, and it also provides a 
game development IDE, shown in the screenshot to the left. An example scenario/task to test is 
shown to the right, involving finding and interacting with 10 interactables (buttons) to reach an 
item that has a key role in the game level (marked green). The testing task is to verify that this 
key item is reachable. The task can be automated using iv4xr agent. So, each time the developers 
tweak the game-level’s layout or logic they can just re-run the agent to check if the aforementioned 
key item is still reachable. 
 

As opposed to dedicated agent programming languages (e.g. JASON, 2APL, GOAL, SARL), iv4xr 

offers an embedded Domain Specific Language (DSL) of agent programming. The DSL is 

embedded in Java. Such an embedded DSL approach means that the agents are in principle 

programmed in Java, but the DSL provides a set of APIs that give the fluent appearance of a 

DSL. In principle, having a native programming language for writing tests is a huge benefit, but 

only if the language is rich enough and has enough tools and community support. Otherwise, it is 

a risk that most companies will be unwilling to take.  On the other hand, using an embedded DSL 

means that the programmers have direct access to all the benefits of the host language, in this 

case Java: its expressiveness (OO, lambda-expression etc.), static typing, rich libraries, and a 

wealth of development tools. So overall, we believe that embedded DSL is the right approach to 

provide iv4xr technology for the industry. 

 

While the agents themselves can do automated testing, they can also be used as a layer providing 

an abstract way to control and test a system under test (SUT). This makes it possible to build 

more test automation on top of the agents, including tools implementing aforementioned 

traditional automated testing approaches (e.g. search based testing, model based testing, etc). 

This allows them to target XR systems, while delegating the handling of tactical level control of 

the SUT to iv4xr agents.  

 

In Figure 2 below we show the architecture of the overall system including the aforementioned 

iv4XR Framework Core. There are also four modules that are indicated as external modules. 

These are themselves tools for testing. They use the Core, but are managed outside the Core. 

The reason we do not include these modules in the Framework Core is twofold. First of all it 

emphasizes the fact that other modules can be added here for specific purposes. The second 

reason is that the software in which these modules are developed does not seamlessly connect 

to the Core. Each of the modules uses a different type of technique which are best supported and 

developed in a specific software environment. Within the project we had to make a trade off 
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between rapid and deep development of the technique in the appropriate software and integration 

into the complete architecture. As scientifically it is more interesting to further develop each of the 

modules we chose to use the most appropriate software environment for each of them at the cost 

of full integration. This does not mean that there is no integration at all, but just that the user needs 

to assemble the appropriate software environments first before being able to combine the 

modules with the core framework. 

 

 
Fig. 2: A top level architecture of the iv4xr Framework. The Framework Core refers to its agent-
based programming and testing core. External modules refer to testing tools that are part of the 
Framework but outside the Core, though they use the Core. 
 

In this Report we will focus on the Framework Core. The external modules will be explained in 

the Reports of their respective Work Packages (e.g., explorative and search-based agents are 

explained in D3.5 of WP3 and affective (user experience) testing is described in D4.4 of WP4). 

This Report will also focus on a more conceptual presentation of the Framework Core. The 

GitHub-pages of respectively the Framework1 and the Framework Core2 provide instructions and 

further documentations on their usage. The Framework Core APIs documentation can be found 

here3. 

SECTION 2 - RELATED WORK 

At the moment iv4xr is one of its kind in terms of providing automated testing for XR systems in 

the scale and spectrum that it can provide. In the current state of technology there are tools like 

Unity Test Framework4 and GameDriver5 that allow XR testing tasks to be scripted, hence they 

can be executed repeatedly by a computer rather than manually. These work fine for testing short 

scenarios but do not scale for long scenarios. The latter involve hundreds if not thousands of 

steps, which would be time consuming and fragile if we are to script them manually. Some tools 

like the aforementioned GameDriver and MAuto [TOK19] can record a scenario and replay it as 

a test. While this removes the need to script the test, record and replay tests are unfortunately 

 
1 https://github.com/iv4xr-project/iv4xr-framework  
2 https://github.com/iv4xr-project/aplib  
3 https://iv4xr-project.github.io/apidocs/aplib/javadocs/index.html  
4 https://unity.com  
5 https://www.gamedriver.io  

https://github.com/iv4xr-project/iv4xr-framework
https://github.com/iv4xr-project/aplib
https://iv4xr-project.github.io/apidocs/aplib/javadocs/index.html
https://unity.com/
https://www.gamedriver.io/
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also fragile. They break6 easily when developers change the layout of the virtual world of the 

application that is under development or move the positions of the world’s entities. 

 

Automated testing (in the sense of generating the tests, rather than just providing automation in 

executing tests) in the XR domain has been mostly attempted in research setups. Much of recent 

work has been focused on using machine learning in the domain of game testing 

[ABS19,Hol+19,Mug+19,Zar19], e.g. where researchers explore the use of techniques such as 

Monte Carlo Search Tree (MTCS) and reinforcement learning (RL).  Such ML techniques are 

used to train a procedural persona to play a game in a certain style (e.g an explorer persona or a 

killer persona) which is then used to automatically play the game for the purpose of testing it. 

Such an approach of testing is suitable for assessing the game balance against different styles of 

play. The approach is not specifically aimed at covering as much possible behavior as possible. 

Zheng et al investigated a combination of deep RL and an evolutionary algorithm to drive a more 

explorative agent towards maximizing coverage [Zhe+19]. Recent fascination in ML is 

understandable; but the approaches do have drawbacks: 

● They require much training, which in turn requires executions on the system under test 

(SUT) for generating data. Unlike testing a library, executing on an XR system takes much 

more time. The overall computational requirement might be too expensive for small 

companies to afford. 

● The resulting trained model might not be accurate, which may lead to false positives for 

developers to investigate. 

● If the developers change the world layout, the trained model might not work anymore, and 

need to be re-trained, which is expensive. 

● The aforementioned approaches are used to train an agent to accomplish a single goal 

(e.g. to reach the game’s end state, or to maximize coverage). The setup is not really 

meant for automating multiple scenarios; for these, each scenario will require separate 

training, which further multiplies the cost. 

 

More traditional approaches to automated testing are search based testing (SBT) [Min04], e.g. 

using evolutionary algorithms, and model based testing (MBT) [Net+07,IFT+15]. It is unclear 

whether “searching” would be more efficient than “learning”. If done with little guidance (which 

usually is the case) SBT is also computationally intensive and suffers essentially the same 

drawbacks as mentioned above. On the other hand, MBT is fast and is much less energy hungry. 

However, we need to have a (behavioral) model of the SUT for it to work, which is quite costly to 

craft. In contrast, iv4xr relies on agent programming. We program tactics and strategies. They are 

composable to build various test scenarios. There is no need for training. The resulting test agents 

are precise, as their behavior is not controlled by some learned approximated functions. They are 

also robust with respect to various development time changes (that is, tests by iv4xr agents do 

not easily break)  [Shi+21]. Iv4xr can also do MBT, if a model is provided (elaborated in Report 

D3.5). The MBT exploits agents as executors. This allows the models to be formulated at a higher 

 
6 By “breaking” a test we mean that the test fails, but not because of a bug. Rather it fails because the way it interacts 

with the system under test is no longer valid. E.g., it tries to interact with an entity that has been removed on purpose 
as part of the new logic of the new version of the system. 
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level, and hence simpler and more feasible to create. In a recent study we have also shown that 

iv4xr agents can be extended to construct a behavioral model as it explores the SUT [Shi+22].  

 

Table 1 below gives an overview of some selected features of available XR testing technology 

and automated testing techniques, and how they compare to iv4xr. 

 

 

 Various testing technology and automated testing 
techniques that have been tried on XR systems (mostly on 
computer games) 

test 
scripting 

record 
and 

replay 

automat
ed 

scenari
o 

testing 

automat
ed play 
testing 

 

explorat
ive 

testing 

model 
based 
testing 

affective 
testing 

tec
hn
olo
gy 

Unity Testing Framework                

GameDriver                 

MAuto                

res
ear
ch 

ML/RL based approaches [ABS19,Hol+19,Mug+19,Zar19]                

Search based approach [Zhe+19]                

MBT [IFT+15]                  

iv4xr                      

 

Table 1: An overview of some selected features of available XR testing technology and 
automated testing techniques. The feature play testing refers to a start-to-end testing. Explorative 
testing refers to the testing of the SUT by interacting with it without any scripted scenario in order 
to reveal behavior left unexposed by scenario-based testing; this is also discussed in Report D3.5. 
Affective testing refers to the testing of user experience. This is discussed in Report D4.4. 
 

As for affective testing, there is still no publicly available solution that companies can use on their 

products, although there exist some initial research efforts on the problem from the side of 

academia [Mel+21, Fer+21, Ans+21, Mak+21].  

SECTION 3 - AGENTS 

This section explains how an iv4xr agent executes and how it interacts with its environment (the 

SUT). We also explain its generic representation of the world state and its memory feature. And 

finally, we also explain its support for automated world navigation and exploration. 

 

Figure 3 below shows the top level architecture of an iv4xr test agent. Since the XR system under 

test (SUT) is not necessarily written in Java, we will conservatively assume that iv4xr test agents 

are deployed as programs that run outside the SUT runtime environment. To control the SUT the 

developers need to provide an interface. In Figure 3 this interface is called the Environment. It 
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should enable a test agent to control and observe the SUT the way its user can, e.g., to control it 

by simulating keyboard input. The agent has two more components: a goal structure and a state. 

A ’goal structure’ is used to formulate a test scenario. It consists of one or more goals that form 

the scenario, along with ’tactics’ describing how to achieve these goals. A state is just an object 

representing the agent’s state (also called ‘belief’ in the BDI terminology). Importantly, it contains 

a data structure called WorldModel (WOM) that the agent uses to keep track of the state of the 

SUT’s virtual world. 

 

Fig. 3: A top-level architecture of an iv4xr test agent. If needed, multiple agents can be 
deployed to control the SUT. 
 
 

The Environment. The Environment is assumed to provide a set of methods implementing 

primitive actions that a test agent can do on the SUT, e.g., to simulate a user's interaction with a 

nearby object in the SUT’s virtual world, or to simulate a walk in the virtual world for some unit of 

distance. One of these methods should be observe() that returns an observation on the SUT state, 

for the rest the developers can decide which primitive actions the Environment offers and how 

much information observe() reveals. Making all objects fully observable would make testing 

easier, but this might be computationally excessive as the SUT might then need to keep sending 

the states of thousands of objects to the agent. To be realistic, we might also want to restrict the 

observation to reflect what an actual user can see. 

 
 1  TestAgent 𝛼        = new TestAgent("player-1") ;  
 2  GoalStructure testingTask = ... 
 3  LTL[] assertions = ...  
 4  
 5  𝛼. attachState(new MyState())  
 6     . attachEnvironment(new MyEnvironment())  
 7     . setGoal(testingTask)   
 8     . addLTL(assertions) ;      
 9 
10  while (testingTask.status().inProgress() 𝛼.update() ; 
11  assertTrue(testingTask.getStatus().success() && 𝛼.evaluateLTLs()) ; 

 

Fig. 4: An example of setting up a scenario test in iv4xr. 
 

Setting up a test. Figure 4 shows a template code to set up a test using an iv4xr agent. Usually, 

a single test like this is used to test a single scenario. The code is in Java. In line 1 we create a 

test agent. The intended scenario to test is to be formulated as a goal structure, to be plugged in 

at line 2. Line 7 gives the goal structure to the agent. Before we can run the agent, it needs a 

state and an interface to the SUT; lines 5 and 6 create these and attach them to the agent. Line 

3 is to be completed, to specify the Linear Temporal Logic (LTL) [BK08] assertions to be checked 
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during the play. Then, line 10 runs the agent, which would also check the LTL assertions as it 

goes. The last line checks that the specified scenario is successfully completed and that all LTL 

assertions were satisfied. 

 

Agents’ execution model. As mentioned, iv4xr implements BDI agents [Her+17]. Given a goal, 

a BDI agent runs an execution loop. Each iteration is also called a deliberation cycle: the agent 

deliberates which action to execute and executes it. Such a loop is highly reactive. When the next 

cycle’s observation shows a change in the SUT state, the agent can immediately respond to it. In 

fact, many XR systems such as games and simulators are implemented using a similar loop. Each 

iteration is called a frame update. For example, a 3D simulator may visually appear to run 

smoothly, but it is actually a discrete system that performs one frame update at a time, but at a 

high speed of e.g. 100 frame updates every second. At every frame update the simulator basically 

iterates over every object in its world to update its state and visualization. As such, it is a very 

dynamic system (its state can change at every frame update), and having a test program that 

runs in a similar way is essential to enable it to keep up with the dynamics. 

 

 
Fig. 5: An agent’s execution loop. 

 

Programming a BDI agent comes down to programming its deliberation logic. In iv4xr, this logic 

is called tactic. Tactics are good for programming how to solve a simple goal. To formulate a 

complex test scenario, we use a goal structure, which essentially is a high level plan of how some 

main goal is to be achieved through subgoals. To support tactics and goal structures, iv4xr agents 

have an elaborate execution loop, shown in Algorithm 1 in Figure 5 above. Here, the agent is α. 

It gets a non-empty goal structure G —for now we can think of it simply as a set of goals. Each 

goal g ∈ G should be accompanied with a tactic, denoted by g.tactic, used for achieving/solving 

g. Although G may contain multiple goals, an iv4xr agent works on one goal at a time. So, first it 
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chooses a goal to work on (line 2); how the choice is made will be discussed later. Then the agent 

runs its deliberation cycles in lines 3-5. The loop runs until the whole G is confirmed to be achieved 

or failed. In terms of testing, if achieving G is considered as an expected result, then failing it 

would count as failing the test. Note that when we run a test scenario, we may also add various 

assertions (as we did in the example in Figure 4) that are to be checked during the play, so failing 

G is not the only error that a test can discover. We will discuss assertions in Section 5. 

 

Each deliberation cycle is done by the agent’s update() method, which is shown in lines 7-20. In 

line 8 the agent calls the Environment’s observe(), it then incorporates the obtained observation 

into its state. Then in line 11 it executes the current goal’s tactic. This may change the SUT state. 

It also returns a ’proposal’, which if accepted by the current goal, the goal is then achieved (line 

16). After possibly many cycles of executing the tactic, we may come to a point where the current 

goal is either achieved or failed (line 17). The goal is failed when the tactic explicitly calls an ’abort’ 

primitive (e.g. because it no longer believes the goal is attainable). Line 18 first checks whether 

this means that the entire G is achieved/failed. If so, the whole execution loop is completed. 

Otherwise in line 20 the agent selects a new current goal and then proceeds with its deliberation 

cycles. 

 

Observation, WOM, and agent’s memory. As with any program state, an agent state S may 

contain various variables. But importantly, it contains an object called WorldModel (also called 

‘WOM’), accessible through S.worldmodel. A WOM provides a generic representation of the state 

of a virtual world. It contains basic properties of the agent that owns it, e.g. its id and position in 

the world, and a set of WorldEntities accessible via wom.elements. A WorldEntity e represents 

an object u in a virtual world. Its notable fields are e.id, e.position and e.properties containing a 

set of name-value pairs representing the properties/state of u. Recall that at the start of every 

update cycle the agent samples a new observation on the SUT (line 8 in Algorithm 1). This 

observation o comes in the form of a WOM as well, representing the SUT state at that moment. 

Observations are ’aggregated’ into S.worldmodel (line 9 in Algorithm 1). If for example in o 

contains a WorldEntity v that the agent has not seen before, v will be added to 

S.worldmodel.elements. It will be kept there (“memorized”), even if after some time the agent no 

longer observes it. The information will be updated if a fresh observation o′ is received, that 

contains new information about v. S.worldmodel contains thus information on both the part of the 

SUT state that the agent currently sees as well as memorized properties of objects outside its 

current observation range. The latter information might indeed be partially or completely obsolete, 

but it might still be useful (it often is). It is up to the agent if it wants to use the information. The 

information is timestamped, so the agent knows how old it is. 

 

The UML class diagram below shows the structure of WorldModel and WorldEntity.  
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Navigation. An important part in XR test automation is automated navigation/travel over the world 

terrain. Since the walkable area of a virtual world is often an infinite domain (consisting of infinite 

number of visitable points), a common way to calculate navigation routes is by representing it as 

a navigation graph (or simply ’nav-graph’) θ = 〈F,V,E〉, where F is a finite set of obstacle-free and 

non-overlapping small areas called ’faces’ that cover the entire walkable area (e.g. small squares 

or triangles can be used as faces). Note that if two faces a,b ∈ F are adjacent, then the player 

can travel from any point in a to any point in b. V is the set of nodes in the graphs, consisting of 

locations, such that for every a∈F , it is represented by one node p∈a. E is the set of edges 

connecting the nodes, such that two nodes are connected when the faces that contain them are 

adjacent. We assume the agent state S also holds a nav-graph. Such a graph can be exported 

by the SUT itself, or else iv4xr provides a utility to construct it on the fly. Iv4xr Framework Core 

provides an implementation of the path finding algorithm A*  [Pra+20] to calculate a path between 

two nodes. An agent can then be programmed to follow the path. We also assume that observe() 

also reveals which nodes in the nav-graph are currently visible to the agent. So, we can mark 

which nodes in the nav-graph that the agent has seen so far. We can thus calculate the so-called 

frontier nodes: marked nodes with at least one unmarked neighbor. Sending the agent to visit a 

frontier node will cause it to discover more nodes, which can be used to drive exploration 

[kwe97,Pra+20]. 

 

To summarize, the following two functionalities are provided by the Framework Core: if p,q are 

positions in the SUT’s virtual world, findpath(θ,p,q) returns a sequence σ of nodes in V specifying 

a traversable path to go from p to q, if there is such a path, otherwise it returns ⊥. The path σ 

starts with a p′ in the same face as p, and ends with a q′ in the same face as q. frontiers(θ) returns 

the set of current frontier nodes of θ .  

SECTION 4 - TACTICS AND GOALS 

To help explaining the concepts below, we will use the 3D game shown in Figure 1 as a running 
example. The game is called LabRecruits. There are objects in the game that the player’s avatar 
can interact with, such as switches. Access to areas/rooms can be guarded by doors, whose state 
can be toggled by interacting with a matching switch. There can be many-to-many connections 
between switches and doors, which makes getting access to an area non-trivial. There are also 
hazards such as fires and monsters. 
 
The Environment that interfaces with this game is assumed to include the following methods: 

● observe() : returning an observation from the perspective of the player’s avatar. 
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● moveTo(v): move the avatar to a location v provided this location is close to its current 
location (reachable in one frame-update) and can be reached with a straight-line walk.  

● interact(e): make the avatar interact with a game object e, provided e is close enough to 
the avatar. 

The agent can access its Environment through its state, as in S.env(). 

ACTION 

Recall that at every deliberation cycle an agent executes the tactic of its current goal (and the 
cycle is repeated until the goal is achieved or aborted). A tactic is made of ‘primitive actions’; 
these are the methods provided by the Environment to provide control over the SUT (this was 
discussed in Section 3). These primitives are meant to be simple and usually correspond to basic 
interactions that a user can do, e.g., to walk for a small distance within a virtual world, or to interact 
with an object located in a close proximity of the user’s avatar in the SUT’s virtual world. To 
provide logic on when an action can be executed, a guard can be attached to it. The syntax for 
defining an action is shown below: 
 

 
 

This constructs an action, and binds it to the variable 𝛼. The f part forms the body of the action, 
this is where we would call a method from the Environment. The q is the guard attached to the 
action. An action is only enabled (eligible for execution) when its guard is true on the current agent 
state. While it is common to specify the guard using a predicate (a function that returns true/false), 
the pair (q,f) actually forms a monadic bind [Wad92]. The q-component can be a query function 
that inspects the current agent state and returns v. The action 𝛼 is enabled only if the returned v 
is not null, and additionally the behavior of f can be made to depend on the returned v. For 
instance, such a query can be used to find an object e in the agent’s WOM which is close enough 
to the player’s avatar. Then f can be an action that moves the avatar closer to e. Note that this 
construct is more powerful than conventional true/false guards. 
 

As an example, consider the LabRecruits game introduced at the beginning Section 4. Below we 
show an action navigateTo(id) that uses the aforementioned pathfinder to guide the agent to the 
location of an in-game object e with the given id. Notice how the guard-part of the action is actually 
a query to find a path to e. 
 

navigateTo(id) =  action() 
    .do2 (S → path → S.env().𝑚𝑜𝑣𝑒To(path.get(0)))     
    .on_(S → { e = S.worldmodel().elements.get(id) ; 

          agentposition = S.worldmodel().position ; 
          return pathfinder(S.worldnavigation,agentposition,e.position) ; }) 

 

Note that the action will not reach e immediately, e.g., if e is far from the current agent location. It 
is meant to be executed in an agent loop as in Figure 5, where it will eventually reach e7. 
 
As another example, below is an action explore(), to guide the agent to the closest and reachable 
frontier node, from where it could see/discover a part of the world it has not seen before. The 
action has the same behavior part as navigateTo, but uses a different query. 

 
7 As another note is that invoking the pathfinder at every deliberation cycle is obviously wasteful. It can be made 

efficient e.g., using memorization. In favor of readability, we do not show such optimization. 
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explore() = action() 
    .do2 (S → path → S.env().𝑚𝑜𝑣𝑒To (path.get(0)))     
    .on_(S → // use frontier(S.worldnavigation,agentposition) to check if there is  
                    // a reachable frontier node; if so return a path to the closest of such a node ) 

TACTIC  

An action can be lifted to a tactic. A more powerful tactic can be obtained by combining multiple 
actions.  In principle a tactic is a set of actions. It is enabled when one of its actions is enabled. 
When the agent executes its current tactic, one of the tactic’s enabled actions will be executed. If 
there is none, the agent will just do a skip-step, hoping that in the next deliberation cycle, the SUT 
state changes so that at least one action becomes enabled. More precisely, a tactic is a 
hierarchical composition of actions. Tactic combinators are used to combine actions. An example 
is shown below: 
 

1  var navigateToTac(e) = FIRSTof( 
2      unstuckTac(), 
3      navigateTo(e).lift() , 
4      explore().lift() , 
5      ABORT) 

 

 

Fig. 6: an example of a tactic, constructed from a number of actions and sub-tactics combined 
with the FIRSTof combinator. 
 

Above, the tactic navigateToTac(e) uses the previously introduced navigateTo() action, but it also 
uses other actions/sub-tactics, combined using the FIRSTof combinator. This combinator 
chooses the first enabled sub-tactic to be executed. This is useful if the agent has not actually 
seen the object e (so it does not know its position either) the action navigateTo(e) in line 3 will not 
be enabled, in which case the tactic above would fall back to explore() in line 4 that will drive the 
agent to explore the world to discover previously unseen parts of it. If at some point it sees e, the 
action navigateTo(e) will be enabled and the agent can switch to it. If explore() runs out of frontier-
node (in other words, the agent has explored what it can) and e is still not found, the tactic exits 
through ABORT in line 5, which would abort the agent’s current goal. 
 
There is one other sub-tactic with a higher priority in navigateToTac(), namely the one in line 2 of 
Figure 6. The tactic is enabled when the agent becomes stuck (its position remains the same in 
the last k-cycles, e.g. because it is halted by a small sticking obstacle). The tactic unstuckTac() 
would then try to unstuck the agent e.g. by moving it a small distance to the left or right. Unstucking 
can be quite complicated, but the important thing to note here is that we often need this kind of 
priority-based logic when controlling an agent, and the FIRTSof combinator gives a nice way for 
expressing such a control. 
 
An important thing to note is that while it is possible to embed all the actions’ logic in their guards, 
combinators like FIRSTof provide a cleaner way to program common controls like priority-based 
control. Available combinators are shown below. 
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Tactic ::= GuardedAction.lift() 
| ANYof(Tactic, ..., Tactic) 

| FIRSTof(Tactic, ...,Tactic) 
| SEQ(Tactic, ..., Tactic) 

 
Fig. 7: Tactic combinators for iv4xr agents. ANYof randomly chooses an enabled sub-tactic. SEQ 
executes the sub-tactic in the specified sequence.  

GOAL AND GOAL STRUCTURE 

The syntax to define a goal for an agent is shown below: 

 
 

The predicate part is used to specify desired states to be. The tactic specifies how the agent can 
execute actions to achieve the goal; that is, to reach a state satisfying the goal-predicate. Two 
examples for LabRecruits are shown below.  
 

 1 Goal closeBy(id) { return 
 2       goal() 
 3       .toSolve(S → { e = S.worldmodel().elements.get(id)  ; 
 4                                 agentposition = S.worldmodel().position  ; 
 5                                 return (e != null  && dist(agentposition,e.position) < 𝜀)  ; } )  
 6       .withTactic(navigateToTac(id))  
 7  
 8 Goal interacted(id) { return 
 9       goal() 
10       .toSolve(S → true) 
11       .withTactic( // interact with the entity identified with id, if the avatar is close enough to it  ) 

 

Fig. 8: Two elementary goals for the game LabRecruits. The goal closeBy(e), aims to get the 
agent to some location close to e. We use the previously introduced tactic navigateToTac(e) to 
solve this goal (line 6). The goal interacted(e), line 8, aims to get the object e interacted by the 
agent. The tactic is not shown, but it assumes the agent to be close to e. Elementary goals can 
be composed to make a more complex one, e.g. SEQ(closeBy(e), interacted(e)) will guide the 
agent to get close to e, and then interact with it. 
 

Tactics are usually good for ‘solving’ (achieving) simple goals. To handle a harder goal, we can 
specify a set of subgoals, each is easy enough for a tactic to solve. For example imagine in our 
example game we have to test some feature of some game object F located in some specific 
room. Let isInteracted(F) be the goal representing the agent is at F and manages to interact with 
it (and tests its feature as it does so). To achieve this the agent will first need to reach the room 
where F is. To access this room a door D needs to be opened first. The door can be closed, in 
which case the agent first needs to find a specific in-game switch B that opens it. Obviously, the 
previous tactic navigateToTac(F) will not be able to solve  isInteracted(F) on its own, as it has no 
knowledge that there is an additional switch-logic that it needs to engage before it can get to F.  
 
A goal structure is a way to express a goal in terms of a composition of subgoals. Goal-
combinators are used to compose the subgoals. The simplest combinator is lift(), to lift a simple 
goal to become a goal structure. Another example is the combinator SEQ. If G1, ... , Gn are 
goals/goal-structures, G = SEQ(G1, ..., Gn) is a goal structure that seeks to solve all its subgoals 
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in the given order. When this happens, G itself is considered as solved. If one of the subgoals 
fails, G fails. For example, the above described test scenario can now be formulated as the 
following goal structure: 
 

1  GoalStructure test_F = SEQ( 
2       SEQ(closeBy(b0),  // b0 is a switch 
3                interacted(b0), // toggle the switch, this should open door d0 
4                closeBy(d0), 
5                assertTrue_(...,S → // check that d0 is open ), 
6                closeBy(F), 
7               interacted(F)), 
8       assertTrue_(...,S → // check the state of F) ) 

 

Fig. 9: An example of a goal structure. This goal structure will first guide the agent to get to the 
switch b0 to toggle it, then to door d0, and check whether it is open. Then it drives the agent to 
get to the entity F, interact with it, and then check its state. Assertions (blue) to check are added 
with assertTrue_(𝝍) constructs. Also notice that the goal-structure is structured in two parts. The 
inner SEQ is meant to establish a state where F has been interacted, then the second part (line 
8) is an assertion meant to check the state of F after it has been interacted. 
 
 

The set of basic goal combinators is shown below: 
 

 
 

SUCCESS is a goal that always succeeds, whereas FAIL always fails. FIRSTof executes the 
subgoals in sequence. It succeeds at the first subgoal that succeeds (the rest of the subgoals will 
then not be executed), and else fails when all subgoals fail. REPEAT(G) repeatedly tries G until 
it succeeds. 

SECTION 5 - SPECIFYING ASSERTIONS 

 
In testing “assertion” is a term used to refer to an expression used to check correctness. It can be 
the correctness of the current state, or the correctness of a series of states. Bear in mind that we 
cannot always assume that test agents have direct access to the SUT state. This depends on 
how the Environment component is implemented. So, in our setup assertions will be checked on 
the agents’ states rather than on the actual SUT states. However, recall that an agent state 
incorporates a WOM, which in turns incorporates the agent’s most recent observation as well as 
memorized states of various objects the agent observed in the past. The WOM contains thus the 
best information the agent has about the SUT state.  
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ASSERTING REACHABILITY 

In the previous section we have seen that a test scenario can be formulated as a goal or a goal 
structure G. If the scenario is expected to be achievable, then the status of G at the end of the 
agent’s run can be used as an assertion, namely that G.status().success() should be true. We did 
this in the example in Figure 4. However, there are more types of assertions we can express in 
iv4xr. But let us first introduce the concept of “testing task” that generalizes the concept of test 
scenario. 
 

The first type of testing task is a task to check the reachability of some state predicate 𝝓. More 
precisely: 
 

Def. 1: a state predicate 𝝓 is reachable if there exists a state s which is reachable from the agent’s 
initial state s0 and such that s ⊨ 𝝓.  

 
Def. 2: a state t is reachable from another state s if there exists a sequence of actions 𝝈, such 
that when this 𝝈 is executed on the state s, it results in the state t. 
 

A testing task to check the reachability of a 𝝓 can be directly formulated as a goal, with 𝝓 as the 
predicate to solve, and assert, at the end of the agent’s run, that the goal is achieved/solved. If it 
is hard to solve 𝝓 directly with a tactic, subgoals can be introduced to provide more guidance as 
discussed at the end of Section 4.  

ASSERTING INVARIANT 

The second type of testing tasks if a task to check 𝝓 ⟹ 𝜓, where both 𝝓 and 𝜓 are state 
predicates. The implication is defined as follows: 
 
Def. 3: 𝝓 ⟹ 𝜓 means that for all reachable state s such that s ⊨ 𝝓, we also have s ⊨ 𝜓.  
 
Such an implicative property is a generalization of the concept of invariant as in Enrst et. al’s 
Daikon [Ern+07], who define an invariant as a state predicate that always holds on a certain 
control location in a program. Above, we replace “control location” with a predicate 𝝓 that 
characterizes SUT states of a certain property. The  𝜓 captures the invariant that is expected to 
hold whenever the SUT is in the state 𝝓. Note that the definition is constrained that 𝜓 is only 
required to hold on the reachable part of 𝝓, rather than on the entire 𝝓. 
 
In a testing setup we cannot really check the implication on all states satisfying s ⊨ 𝝓. Instead, 
we try to find one such s, and then we check if 𝜓 holds on it.  This can be implemented as a goal 
structure G = SEQ(G𝝓,assertTrue_(𝜓)) where G𝝓 is a goal structure that seeks to establish a state 
satisfying 𝝓. An example of this was shown in Figure 9. If checking 𝜓 on more witnesses is 
desired, we can for example split 𝝓 into disjunct 𝝓1 ⋁ … ⋁ 𝝓n, and then verify each 𝝓k ⟹ 𝜓 
individually. 
 
Checking 𝜓 is usually easy, it is finding a proper s (one such that s ⊨ 𝝓) that is actually much 
harder as it involves finding a sequence of actions 𝝈 that leads to such an s. This sequence 𝝈 is 
often very long, and finding it requires insight on the SUT’s logic. In the example in Figure 9 we 
showed how this can be done by providing subgoals, each is intended to guide the agent in finding 



 

D2.4 – Report describing the iv4xr Framework 

WP2-D2.4      iv4XR                                     16 

 

  
 

some key segment of 𝝈. Further automation by employing online search algorithms8 that enables 
the test agent to find some, and sometimes all, these subgoals on its own. These algorithms were 
presented in [Shi+21,Shi+22]. Employing an online search algorithm can however be quite costly 
in terms of computation time. In [Shi+22] we have shown that the agent can also be extended so 
that it also builds a model of the SUT’s logic while it is performing the search. Using such a model, 
next time we want to execute the same testing task, the search can be done fully or partially on 
the model, which can be done much faster. 

ASSERTING DYNAMIC PROPERTY 

The third, and last, form of testing tasks that an iv4xr agent can perform is a task to check the 
implication 𝝓 ⟹ ltl(𝜓), where 𝝓 is a state predicate and 𝜓 is an Linear Temporal Logic (LTL) 
formula. An LTL formula is a predicate of over sequences of states, so it allows us to capture a 
requirement over a whole execution rather than just a requirement over some states. For 
example, for our Lab Recruits game example, we may want to check that for some 𝝓 the total 
amount of points collected by the agent during the execution should never exceed 100. Another 
example: the state where a door d is open, but a switch b is toggled off should never occur. 
 

Formally, the implication is defined as follows: 
 
Def. 3: 𝝓 ⟹ ltl(𝜓) means that for all “executions” 𝞹 that ends in an s such that s ⊨ 𝝓, we also 
have 𝞹 ⊨ 𝜓. 
 
An execution here means a sequence 𝞹 of states starting at the agent’s initial state s0 (so 𝞹0 = 
s0, and such that for any two consecutive states 𝞹k and 𝞹k+1 there is an action a, which if it is 
executed on 𝞹k it would result in the state 𝞹k+1. 

  
As before, in a testing setup we cannot check the implication on all possible executions, but we 
can check it for one sample execution. This can be implemented simply by offering a goal 
structure G𝝓 that seeks to establish the state predicate 𝝓. One or more LTL formulas can be given 
to the agent, which it then checks while executing G𝝓. This scheme checks the implication on one 
witness execution. If more witnesses are desired, as before we can split 𝝓 into disjunct 𝝓1 ⋁ … 
⋁ 𝝓n, and then verify each 𝝓k ⟹ ltl(𝜓) individually. 

 
LTL is a well known formalism for expressing sequence predicates [BK08]. The syntax for writing 
LTL formulas in iv4xr is shown below, where p is a state predicate as an atom, φ is an LTL formula, 
and F is either a state predicate or an LTL formula. 
 

F   ::=   p  |  φ 

φ   ::=   now(p)   
       |  next(F)      -- also known as the X operator 

       |  always(F )     -- also known as the ⛶ operator 

       |  eventually(F )    -- also known as the ⬦operator 
       | ltlAnd(φ0, … , φn−1)    -- conjunction ∧ 

       | ltlOr(φ0, .., φn−1)     -- disjunction ∨ 
       | ltlNot(φ)     -- negation ¬ 
       | φ.implies(F)     -- implication → operator 
       | φ.until(F)     -- the U operator 

 
8 An “online” search algorithm executes directly on the SUT. In contrast, an offline algorithm performs the search on a 

model. An offline approach is much faster, but obviously we can only do it if we have a model.  
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The semantics of LTL formulas are usually defined over infinite sequences [BK08]. However, 
since executions in tests are of finite length, we need to use a variant that defines their semantic 
over finite sequences. We use the definition as in [Pra18]. In particular, this definition judges 𝞹 ⊨ 
φ based only on the information in 𝞹. If φ is a future operator, then the promised situation must 
be observed in 𝞹. Conversely, if φ is a safety property, the definition does not consider possible 
violations if 𝞹 would be extended. For example 𝞹 ⊨ eventually(p) holds if p holds on some state 
𝞹i , whereas 𝞹 ⊨ always(p) is considered to hold if all states in 𝞹 satisfies p (even if some future 
extension of 𝞹 might violate p). For evaluating the formulas we implement a labeling algorithm as 
in [Pra18]9 that allows linear time (with respect to the sequence length) evaluation. 
 
As examples, below are some LTL specifications we could impose on the execution generated 
by the test in Figure 9. The first one f1 states that eventually the agent should accumulate 11 
points (a player gets points for e.g. getting close to a switch and toggling it for the first time). The 
second one  f2 states that it should never be the case that door d0  is open while the switch b0  is 
turned off.  
 
 

var f1 = eventually(S → { 
          agent = S.worldmodel().elements.get(agentId) ; 
          point = agent.properties.get(“point”) 
          return point >= 11 ; } ) 
 
var f2 = ltlNot(eventually(S → { 
          d0 = S.worldmodel().elements.get(“d0”) 
          b0 = S.worldmodel().elements.get(“d0”) 
          return b0 != null && d0 != null && ! b0.properties.get(“isOn”) && d0.properties.get(“isOpen”) ; }  ) 

 

 
These formulas can be attached to the agent using agent.addLTL(f1,f2,...). When the agent is run, 
the attached formulas will be checked. 
 

REPORTING 

In Java a test is usually coded as a JUnit test class. So an iv4xr test code such as in the example 

in Figure 4 would be put in a test method inside a JUnit test class. Various assertions, as 

mentioned above, would then be implemented as JUnit assertions. A reachability assertion can 

be directly checked by a JUnit assertion. The results of the other two types of assertions are 

logged into a DataCollector object, after which can be inspected by JUnit assertions. More of this 

is detailed in the Framework Core manuals10.  

 

Additionally, a test agent can be configured to produce a trace file when it is run. Values from the 

agent state (e.g. the agent’s position, properties of key objects, etc) can be recorded into the trace 

file. Collected traces can subsequently be subjected to post-analyses, e.g. visualization and 

 
9 But without the algebraic part. [Pra18] allows a mix of algebraic and LTL properties to be formulated. The algebraic 

part is more costly to check. In iv4xr we do not implement the algebraic part. This is future work. For the pure LTL part 
its labeling algorithm can evaluate LTL formulas in linear time with respect to the length of the input sequence. 
10 https://github.com/iv4xr-project/aplib/blob/master/docs/agentbasedtesting.md  

https://github.com/iv4xr-project/aplib/blob/master/docs/agentbasedtesting.md
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“runtime verification”11. An example of visualization is shown below; it is a heatmap showing the 

maximum intensity of some chosen numeric property in the agent state as it traverses a world. 

 
 

Instructions on how to produce traces and visualization can be found in the above mentioned 

manuals.  

 

The Framework supports the use of LTL to do runtime verification [BY18] on the produced traces. 

This can be done with the same LTL support discussed in the previous subsection. Whereas 

previously we discussed the use of LTL formulas as assertions to check live test executions, for 

runtime verification we use LTL post-mortem on trace files. We can also use LTL formulas to 

query the traces, e.g. if we are interested in finding traces showing a certain behavior. The 

Framework also provides an outside-Core module called  LTL-pxevaluation12 with an extended 

version of LTL which includes e.g. predicates over areas and aggregation. With this extension we 

can express, for example, that while the agent is in area A, the value of some property x never 

exceeds some constant C1, or that the average of x while in A never exceeds C2.  

 

The trace files are in the CSV format. So, beyond the above two kinds of post-processing provided 

by the Framework, they can be targeted by general purpose data science libraries like Pandas. 

SECTION 6 - DYNAMIC GOALS 

Essentially, a goal structure is used to impose an order in which its goals are executed. This order 
can be seen as a plan. The goal-combinators (see Section 4) have one shortcoming though: the 
induced plan is rather static. For example, consider FIRSTof(G1,G2). In some SUT state G1 might 
succeed, and hence G2 will not be tried, but in a different state G1 might fail, and hence both G1 
and G2 are tried. While there is some dynamics in this, note that in both cases the order in which 
the subgoals are tried is fixed: first G1 then possibly G2. This fixation limits the way the agent can 
respond to emerging situations. 
 
A dynamic goal is a goal structure whose structure can change at the runtime, and hence the plan 
it induces can also change dynamically. The following actions are the primitives to do such runtime 
change: 
 

 
11 Contrary to its name, “runtime verification” does not refer to verification while a program is running. Rather, it is 

verification based on extracting information from a running system [BY18]. The approach has been researched, with 
various approaches have been developed.  

 
12 https://github.com/iv4xr-project/ltl-pxevaluation  

https://github.com/iv4xr-project/ltl-pxevaluation
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Above, a ’goal function’ is a function Γ that evaluates the agent current state and constructs a 
goal structure. Alternatively, it can additionally take a query result α as in the do2 construct 
discussed in Section 4. 
 
Suppose g is the agent’s current goal. Executing addBefore(Γ) on the current state S will first 
construct a goal structure H = Γ(S), which will be inserted ’before’ g, and then g itself is aborted. 
If g is a k-th subgoal in a SEQ(..g..) or FIRSTof(..g..), H will be inserted in the construct, just 
before g (so it will become the new k-th subgoal). If g is the root goal, or if it is a subgoal in 
REPEAT(g), we will treat it as a singleton SEQ(g) and then insert H accordingly. The combinator 
addAfter works similarly, but it inserts the new goal H after the current goal g. As any other action, 
addBefore(Γ) can also be guarded (with a predicate or a query). This allows the agent to decide 
at the run-time when it wants to deploy a new goal. The goal function Γ decides which goal is to 
be deployed. By default, goals added dynamically like this will be removed again after they are 
accomplished or aborted, so they cannot be executed again unless they are explicitly re-
introduced. 
 

An example for LabRecruits is shown below. Recall the closeBy(e) goal in Figure 8, used to drive 
the agent to a position close to the object e. The route to e can be long and hazardous. Hazard 
such as fire and enemies lower the player's health when they touch the player. The player can 
heal itself by touching a healing-pole, if it sees one (but this can only be done once per healing-
pole). We can make the goal closeBy(e) smarter by introducing an action that can interrupt the 
current goal to first drive the agent to a healing-pole to heal up when its health becomes too low. 
This logic can be built with addBefore(), as shown below: 
 
 

1  Action healUp() {return 
2       addBefore(S → healingPole → 
3                                   SEQ(closeBy(healingPole.id), interacted(healingPole.id)) 
4      .on(S → 
5                  // check if (1) the agent health is low, and 
6                  // (2) there is an unused and reachable healing-pole in S.worldmode().  
7                  //       If one can be found, return it, else return null   
8             ) ;   } 

 

 
In the code above, lines 2-3 use a lambda-expression to define a goal-function. The goal-structure 
to generate is specified in line 3. Notice that the specific goal to do depends on the parameter 
healingPole, which is decided dynamically (at runtime). 
 

We can now write a smarter closeBy(e), as shown below. It uses the original closeBy(e), but alters 
its tactic so that the action healUp() can fire first when its logic concludes that it needs healing 
and there is an unused healing-pole it can reach. When this happens, the goal structure changes 
from REPEAT(closeBy(e)) to REPEAT(SEQ(H,closeBy(e))) where H is the new goal to heal up 
the agent. The insertion of H also causes the goal closeBy() itself to be aborted. The REPEAT 
construct will now cause the SEQ(..) body to be tried again. If H succeeds, it is removed and we 
move on to closeBy(e). If H fails it is removed and REPEAT will retry closeBy(e). This goes on 
until the latter succeeds. 
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1  GoalStructure smarterCloseBy(id) { return 
2          REPEAT(closeBy(e) 
3                         .withTactic(FIRSTof(healUp().lift(),  navigateToTac(e))) 
5          ; } 

 

Composing dynamic goals. Using the primitives addBefore and addAfter we can now define 
goal combinators that behave more dynamically than the ones we have in Section 4. For example 
we can now define IF(q, Γ,H). This constructs a goal structure that would first apply the query 
function q on the current agent state S. If this results in a non-null value a, it will continue with the 
goal Γ(a). Else, if a is null, it will continue with H. Figure 10 below  shows how this combinator is 
defined using addAfter. The more traditional IF(g,G,H) where g is a predicate can be defined by 
encoding g as a query function. Note that IF cannot be defined using FIRSTof, because e.g. 
FIRSTof(G,H) always tries G, rather than choosing between G and H.  
 

Recall that we also have a REPEAT(G) construct; this was introduced in Section 4. This construct 
repeatedly attempts the goal G until it succeeds. Using IF we can now also have guarded 
REPEAT and WHILE constructs; see Figure 10. 
 

 

GoalStructure IF(q,Γ,H) { 
       Goal g = toSolve(x → true)  
                     . withTactic(addAfter(S → { 
                               a = q.apply(S) ; 
                               return a!=null ? Γ.apply(a) : H ; }).lift()) ; 
       return FIRSTof(g.lift()) ; } 
 
GoalStructure IF(g,G,H) { return IF(S → g.test(s) ? true : null,   b → G,  H) ; } 
GoalStructure REPEAT(G,g) { return REPEAT(  SEQ(FIRSTof(G,SUCCESS), IF(g,SUCCESS,FAIL))) 
GoalStructure WHILE(g,G)   { return IF(g, REPEAT(G, not(g)), SUCCESS) ; } 

 
Fig. 10:  Combinators to construct dynamic goals. 

SECTION 7 - DEPLOYMENT ARCHITECTURE 

As a framework iv4xr is not something we can use out of the box. We first need to construct 
several components to connect it to a given SUT, and to provide some basic automation, which 
later at the higher level can be combined to deliver more powerful automation. The figure below 
shows the typical architecture for facilitating iv4xr use. Some of these components are SUT-
specific, so it is not possible to provide them generically. Building these will require some effort; 
but it is a one-off investment, after which the built infrastructure can be reused over and over to 
do automated testing. 
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Fig. 11: A typical architecture to integrate iv4xr into the testing architecture of an SUT. 

 

 

The test agent comes from iv4xr, or at least we need iv4xr Framework Core. Along with a test 
agent, the following components are needed: 
 

1. An implementation of the class Iv4xrEnvironment, responsible for handling the interaction 
with the system under test (SUT), such as sending a command to the SUT and to obtain 
observation of the SUT state. 

2. A direct instance or an implementation of the class Iv4xrAgentState to hold the agent's 
state. Among other things, this state will hold a WorldModel as a generic representation 
of the SUT's gamestate. 

3. A WorldModel also contains one or more WorldEntity; each represents an object in the 
SUT. WorldModel and WorldEntity are generic representations, regardless of the SUT. 
We will thus need to build a translator that translates actual SUT objects and state to 
WorldEntity and WorldModel. 

4. To do something smart, such as automatically navigating to a destination, our agent will 
need a bunch of tactics and goals. These are game-specific, so we will also need to 
construct a library of goals and tactics. Iv4xr does provide some support e.g. by providing 
pathfinding and exploration algorithms, in addition to a whole range of tactic and goal 
combinators. 

 
More instructions and examples on how to set these up can be found in the Github page of the 
Framework13. 

SECTION 8 - EXPERIENCE 

Below we show some selected results from our studies. The first one is shown in Figure 

12., taken from [Pra+22], is a study of a controlled subject, which is a small computer game 

called MiniDungeon. Despite the size the game offers quite some challenges such as limited 

observability, non-determinism, enemies, and guarded areas (areas guarded by doors that need 

to be unlocked first before the user can access the areas). While it is easy to do unit testing on 

separate entities/objects of this game, it is much harder to manually script a lengthy test scenario. 

The results in the table below show that with automated agent-based testing we can significantly 

improve the overall test coverage (compare Ucov and allcov), and also find bugs that were not found 

by unit testing. 

 

 
13 https://github.com/iv4xr-project/iv4xr-framework  

https://github.com/iv4xr-project/iv4xr-framework


 

D2.4 – Report describing the iv4xr Framework 

WP2-D2.4      iv4XR                                     22 

 

  
 

 
Fig. 12: Comparing the code coverage of manually written unit tests on a small game called 

MiniDungeon (Ucov) and the code coverage of automatic agent-based tests (PTcov). The combined 

coverage is denoted by allcov.Each row refers to different types of components of the game. C is 

the number of classes that implement the component-type that the row represents, i is the total 

number of instructions, and cc is the total cyclomatic complexity of the component type.  Ubug is 

the number of bugs discovered by unit testing, PTbug is the number of bugs discovered by agent 

testing. 

 

The next table in Figure 13 shows the results of a study [Shi+21] on the robustness of agent-

based tests. A test is robust if it does not break when the developers change the SUT in a way 

that does not influence the feature that is being tested. For example, such a change can be a 

change in the world’s layout, or if the developer moves the location of some objects to new 

locations, but it can also be some changes in the logic of the SUT. If a test breaks, then manual 

effort has to be spent to fix it. So, robustness is a desired property. E.g. by exploiting pathfinding 

discusses discussed in Section 3, a test agent would be able to deal with changes in the world 

layout, for example, as long as they do not influence the reachability to the objects it want to test.  

 

In the study two setups were used. The first setup uses tactics that exploit pathfinding, but the 

goal structures are static (roughly they look like the example in Figure 9). The second setup 

exploits dynamic goal structures mentioned in Section 6. A dynamic goal is used to look for an 

alternative interactable that could unlock a block if the default one fails (e.g. because the logic 

has been changed). 

 

The results in Figure 13 show that the first setup is quite robust with respect to layout and position 

changes, but not against changes in the logic of the SUT. The second setup is robust against 

both types of changes. 
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Fig. 13: the robustness of agent-based tests against changes in the world layout and changes in 

the SUT logic. The experiment is done on three levels of the game Lab Recruits.Two setups were 

compared. The first on, Testbase, uses static goal structures as in the example in Figure 9. The 

second one, Testdynamic, exploits dynamic goal structures mentioned in Section 6. 

SECTION 9 - CONCLUSION 

We have presented the main concepts of iv4xr agent-based testing approach. Its agent-based 
Core allows test agents to be programmed with tactics. Test scenarios can be abstractly 
expressed as single goals, whereas more complex scenarios can be expressed with goal 
structures. Automated testing through agents can significantly improve the overall coverage and 
strength of testing, on top of existing manual testing. Agent-based tests are also robust. However, 
due to the unstandardized technology used in XR systems, iv4xr requires an interface and a SUT-
specific library of basic tactics and goals to be developed as well. However this is a one-off 
investment, after which developers can continuously benefit from the automation provided by 
iv4xr.   
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