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EXECUTIVE SUMMARY 

 

This deliverable is a software deliverable. In this document we provide an overview of the state 

of the work on WP4, software links, and descriptions. We annexed papers and reports that 

describe in more detail the development and results of the software. 

 

Acronyms and Abbreviations 

 

SETA Socio-Emotional Test Agent 

SUT System Under Test 

XR Extended Reality 

UX User Experience 

RL Reinforcement Learning 
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INTRODUCTION 

 

Work Package 4 focuses on developing socio-emotional test agents (SETAs) to aid the 

systematic assessment of User Experience (UX) of Extended Reality (XR) systems. The SETA’s 

will use well-established emotion appraisal theories and models to assess the emotional state; 

they will cover social and behavioural variability to simulate a wide range of users; and use a 

progression model allowing it to appraise UX-relevant user states over time. 

To achieve these goals, we need to build several components. To create these components, we 

need to understand the social and emotional experience of the user. We need comprehensive 

profiles with social properties of different types of users. We also need information on how the 

scenarios or type of interaction impact the user. We can then use the profiles to test software 

automatically with the developed components. 

Work on this task is on track. Task 4.2 was slightly delayed due to pandemic constraints that 

made the planned user studies impossible to conduct. We were planning on collecting 

physiological measures which required close contact with participants. 

 

In this period the work was divided into four main components: 

● study and development of models of user experience and social components of interaction  

● study and development of behavioural models that fit the task of testing UX 

● study and development of models of difficulty estimation of scenarios 

● study and development methods for modelling user profiles 
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SOFTWARE INCLUDED IN THIS DELIVERABLE 

APPRAISAL MODELS FOR UX ASSESSMENT  

Machine Learning and the PAD Model of Emotion 

 

The previous implementation of the UX testing agent (D4.1) relied on a two dimensional affective 

model, based on the dimensions of Arousal and Valence. These two dimensions were updated 

following a rule-based approach in order to represent the expected affective state of a user. To 

improve upon this approach, we decided to use a 3-dimensional emotional model, the PAD model 

of emotion [1], which describes human emotions based on three dimensions: Pleasure; Arousal; 

and Dominance. We further decided to use machine learning (ML) instead of rules to predict the 

expected emotional state of the agent.  

By using machine learning instead of rules to model the evolution of the emotional dimensions, 

the predictions will be based on that which real users reported feeling in similar or comparable 

situations. With this, we aim to achieve a better predictive accuracy and a more reliable model. A 

representation of the machine learning process used can be found on Fig. 1. 

 

 

Figure 1:  A graphical representation of the machine learning approach. 

 

 

The use of the PAD model of emotion improves the granularity of the prediction, adding an extra 

dimension, Dominance, to the two dimensions that were previously used (the previously used 

Valence dimension being comparable to the Pleasure dimension). This means that instead of 
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using a core affect model, we are using a full emotional model, which has been used to classify 

a considerable part of the human emotional spectrum [1]. 

To implement the previously mentioned improvements, a different game was used. The game 

first used was too simple and failed to provide a good coverage of the emotional space. There 

were no dangerous elements in the game, for example, which meant that it would be unlikely that 

a user would experience fear. 

 

 

Figure 2:  Screenshots of the "Flower Hunter" game. The player, represented by a black and yellow ball, 

needs to traverse a field riddled with enemies, health providing rice cakes, and coins, in order to find a 

pink flower (shown on the bottom right screenshot). Once the player finds this flower, the game is over 

and the player wins. If the player loses all its health points by touching enemies, then the game ends and 

the player loses. The player can use a sword to fight and kill the enemies (shown in the bottom left 

screenshot). 

 

The game used, named "Flower Hunter", was inspired by old-school top-down 2D games like 

Legend of Zelda. It is easily modifiable, fast-running, compatible with Python machine learning 

libraries, and ultimately entertaining enough to motivate users to play it. Screenshots of the game 

can be found on Fig. 2. This game is still far from a complex XR system, but the studies being 

done here have never been done on simpler games or applications, so we have been forced to 

build the foundations of the research ourselves. Once we have proven that our approach works 
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for a simpler game, we can expand and apply it to more complex test cases, as are the iv4XR 

case studies (Space Engineers, etc…). 

With a test-bed game and emotional model decided upon, it was time to define the inputs and 

outputs of our machine learning model. The inputs would have to encapsulate all relevant 

information about the game, whereas the outputs needed to relate to the three dimensions of the 

PAD model of emotions. 

Pertaining the inputs, we decided to use numerical values related to the player and the different 

objects present in the game. The list of the inputs used is as follows: 

●      Distance to closest enemy 

●      Distance to closest rice cake (a collectible) 

●      Distance to closest coin (a collectible) 

●      Number of enemies in view 

●      Number of rice cakes in view 

●      Number of coins in view 

●      Sum of value/distance of enemies  

●      Sum of value/distance of rice cakes   

●      Sum of value/distance of coins 

●      Seconds since seeing enemy  

●      Seconds since seeing rice cake  

●      Seconds since seeing coin  

●      Distance to objective  

●      Health Points  

●      Coins gathered 

●      Kills 

●      Damage done  

 

To train a machine learning model, we required information about the three emotional dimensions 

of a player as he traversed the game, as we believed it would be more meaningful to the testers 

and designers to know how the emotional dimensions evolved over time and space opposed to 

only having a final estimate of the value for each dimension for the totality of the interaction 

between the user and the system. Furthermore, the closest to continuous this information could 

be, the better, as it would allow us to create a finely grained model.  

To achieve this close to continuous annotation, user questionnaires couldn't be used. 

Physiological data was an option, and might still be used in future work, but it was intrusive, 
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required specialised equipment, and we found no studies directly correlating physiological data 

with the 3 dimensions of the PAD model. As such, we decided to use continuous, after the fact, 

annotation, inspired by such works as [2]  and [3]. 

This annotation worked as follows. The user, after playing a given level of the "Flower Hunter" 

game, was asked to annotate one of the PAD emotional dimensions. She did so by seeing a 

recording of the level he had just played while using the up and down arrows on a computer 

keyboard to control a line on the screen, which represented the evolution of the emotional 

dimension throughout the traversal of the level. Two screenshots taken during the annotation 

process can be found on Fig. 4. 

 

Figure 4:  Screenshots of the continuous annotation process used. The black line that is seen on the 

screen was controlled by the user, going up or down according to the perception the user had of the 

dimension being annotated having increased or decreased, respectively. 

 

We chose to have each user annotate only one of the PAD dimensions. We did this both to spare 

the user 3 consecutive annotations after playing a single level, but also to ensure the user kept in 

mind the dimension that she was annotating without getting confused and inadvertently mixing 

the dimensions. By annotating a single dimension, the user only had to remember a single 

definition for the dimension being annotated, thus, in principle, ensuring more reliable annotations. 

This came, however, at the cost of having only one of the dimensions annotated for each user 

trace we had. 

We conducted a study to collect data with 88 participants playing three "Flower Hunter" levels 

and self-reporting their levels of a given PAD dimension. Each participant was randomly assigned 

a dimension at the beginning of the experiment and given a definition of said emotional dimension. 

The participants could only proceed with the experiment once they confirmed that they understood 
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the definition for their assigned emotional dimension. The levels used for the experiment can be 

found on Fig. 3. In the end, we had 264 annotated gameplay traces.  

 

 

Figure 3:  The three maps used for the collection of data. As can be seen, all the maps had the same 

topology yet the location and amount of objects differed between them. 

 

The several input values and the output value were collected with a frequency of 8Hz. To tackle 

the sequential nature of the data, we decided to translate the input and output into overlapping 

slices of variable length (for example, one second), and using the variation of the values within 

that slice of time to train the model instead of the absolute values themselves. An exception were 

the input values related to the time elapsed since an event, which were also fed to the model in 

their absolute form as to allow the model to be aware of long periods of time where a given even 

didn't occur, for example, being aware that the player hasn't seen an enemy in over a minute. 

The output slices were further classified as "increasing" or "decreasing/stable", transforming a 

prediction problem into a classification one. The absolute values for the emotional dimensions 

varied greatly between different users and didn't provide much information by themselves. To 

know if an emotional dimension was increasing or not was, however, a valuable information. 

We then discarded all traces where there was no change to the emotional dimension throughout 

the entire play-through. These were the only traces that were discarded, all others being used. 
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Lastly, there were considerably more instances of the "decreasing/stable" class than of the 

"increasing" class. As such, the training data required balancing. From several methods tried, 

balancing using random over sampling proved to give the best results. 

After gathering and processing the data as described, we were now faced with a traditional binary 

classification problem. We experimented with several different machine learning algorithms, such 

as neural networks, decision trees and state vector machines. In the end, the random forests 

algorithm was the one that provided the best results. 

A different predictive model had to be trained for each one of the PAD emotional dimensions. As 

such, we achieved a different accuracy for each dimension. For the Pleasure dimension, we were 

able to achieve an accuracy of 72.8%. For the Arousal dimension, we were able to obtain a slightly 

better 73.1% of accuracy. However, our approach fared considerably worse on predicting the 

Dominance dimension, which we were only able to predict with around 60% accuracy. 

The code pertaining to this section along with instructions on how to use it can be found on the 

GitHub repository [5]. The instructions can also be found in Annex A1. 

 

Links and References: 

References: 

[1] J. A. Russell and A. Mehrabian. Evidence for a three-factor theory of emotions. Journal of 

research in Personality, 11(3):273–294, 1977. 

[2] R. Plutchik. A general psychoevolutionary theory of emotion. In Theories of emotion, pages 3–

33. Elsevier, 1980. 

[3] P. Lopes, G. N. Yannakakis, and A. Liapis. Ranktrace: Relative and unbounded affect 

annotation. In 2017 Seventh International Conference on Affective Computing and Intelligent 

Interaction (ACII), pages 158–163. IEEE, 2017. 

[4] D. Melhart, A. Liapis, and G. N. Yannakakis. The effect game annotation (again) dataset. 

arXivpreprint arXiv:2104.02643, 2021. 

 

Source code: [5] https://github.com/iv4xr-project/PAD_emotion_game 

 

Expected Publications:  

Pedro M. Fernandes, Manuel Lopes, Rui Prada, Learning Emotion from Continuously  Annotated 

User Traces. Manuscript in preparation. 

https://github.com/iv4xr-project/PAD_emotion_game
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The Appraisal model of emotions for Automated PX testing 

 

In WP4, we are also investigating the use of a cognitive appraisal model of emotions for 

automated agent-based player experience (PX) testing. The idea is explained more in our abstract 

paper [6]. To meet this aim, at the beginning, we developed a formal model of appraisal for event-

based emotion. In particular, we discuss an event-based transition system to formalise relevant 

emotions using Ortony, Clore, & Collins (OCC) theory of emotions [7]. The model is integrated on 

top of iv4xr’s tactical agent programming library, to create intelligent PX test agents, capable of 

appraising emotions in our first game case study called Labrecruits. The results are graphically 

shown e.g. as heat maps. Visualisation of the test agent's emotions would ultimately help game 

designers to produce contents that evoke a certain experience in players. The results of a level 

called Lab1 are shown in Figures 4 to 6. Technical details of the model and the integration to 

Aplib can be seen in the paper [8], published in EMAS@AMAS. The code of the model of emotion 

is accessible through the project’s Github repository [9]. The prototype version of automated 

agent-based player experience (PX) testing along with the instruction is available on a separate 

repository [10] which keeps getting updated. 

 

 

Figure 4: The emotions’ timeline in Lab1 level setup. 
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Figure 5: The heatmaps of negative triggered emotions 

 

Figure 6: The heatmaps of positive triggered emotions 
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Afterward, we concatenated our working prototype with the model based testing (MBT) package 

from WP3, so now it is not only compatible with the last created version of iv4xr-core but also with 

the last version of iv4xr-MBT. Currently we are working on having automated testing of emotional 

requirements using model based testing. To do so, we are using extended finite state machines 

provided by MBT and we are formulating emotional requirements asked by game designers into 

linear temporal logic (LTL) formulas. We also use Buchi model checking existing in iv4xr-core and 

search based testing existing in iv4xr-MBT to generate test suites to be used for the emotional 

evaluation of the game-level under test against the given set of LTL emotional queries. This would 

create a whole pipeline for automated PX testing. The pipeline is almost completed, with only the 

LTL emotional evaluation part still being under development. The pipeline can be used along with 

iv4xr-MBT and iv4xr-core to create a test suite e.g. using buchi model checker in iv4xr-core and 

then using our model of emotions, you can get a visualised result of emotions for the level under 

test. Currently, the PX testing package uses a random level generator in WP3 to have any desired 

level for the test. The source code exists in the github repository in the branch called “pxtesingfr” 

[10]. To work with it, it is needed to have iv4xr-core [11], Lab Recruits iv4xr-demo project [12] and 

iv4xr-MBT [13].  

 

 

Links and References 

[6] Ansari, S. G. (2020, October). Toward automated assessment of user experience in extended 

reality. In 2020 IEEE 13th international conference on software testing, validation and verification 

(ICST) (pp. 430-432). IEEE. 

[7] Ortony,  A.,  Clore,  G.,  Collins,  A.:  The  cognitive  structure  of  emotions.  cam  (bridge 

university press. Cambridge, England (1988) 

[8] Ansari, S. G., Prasetya, I. S. W. B., Dastani, M., Dignum, F., & Keller, G. (2021). An Appraisal 

Transition System for Event-driven Emotions in Agent-based Player Experience Testing. 

Accepted in EMAS@AMAS, Springer (in press) arXiv preprint arXiv:2105.05589. 

[9] https://github.com/iv4xr-project/jocc 

[10] https://github.com/iv4xr-project/occ4pxtesting 

[11]https://github.com/iv4xr-project/aplib 

[12] https://github.com/iv4xr-project/iv4xrDemo 

[13] https://github.com/iv4xr-project/iv4xr-mbt 

 

 

https://github.com/iv4xr-project/jocc
https://github.com/iv4xr-project/occ4pxtesting
https://github.com/iv4xr-project/aplib
https://github.com/iv4xr-project/iv4xrDemo
https://github.com/iv4xr-project/iv4xr-mbt
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Expected Publications: 

Ansari, S. G., Prasetya, I. S. W. B., Dastani, M., Dignum, F., & Keller, G. . Automated testing of 

emotional requirements of a game level using model based testing, Manuscript in preparation. 

 

GENERATING BEHAVIOUR FOR UX TESTING 

 

As part of WP4, we are also exploring how to ensure the agent’s behaviour is as “human-like” as 

possible, something which is necessary to ensure that the obtained UX measurements are 

reliable. An agent that constantly repeats a single action that doesn't alter the state of the 

environment might report a bad UX, but that doesn't necessarily mean the environment being 

tested is at fault. UX testing agents will be required to behave like users or else any obtained 

measurements of UX might prove meaningless. Generating behaviour and measuring UX will be 

two faces of the same coin and both will need to work together if truly automated UX testing is to 

be achieved. As such, we have decided to explore ways in which "human-like" or "persona-like" 

behaviour can be generated. 

The behavioural generator of our UX testing agents should satisfy the following criteria: 

 

1. Allow the agent to achieve the goals that users strive to achieve when using the system 

under test.  

2. Pursue those goals in a way that resembles the behaviour of individual users or clusters 

of users. 

3. Provide variety, allowing for the agents to behave in different ways when presented with 

the exact same scenario, just like different users often behave differently in the same 

situation. 

 

Each of this criteria presents its own set of problems. Considering the "Flower Hunter" game 

presented in the previous section, to tackle criteria 1, we must endow the agent with the ability to 

navigate the map, fight enemies, and search for items. To tackle criteria 2, we have to ensure that 

the way in which the agent solves criteria 1 is similar to the way real users do it. Finally, our 

solution must allow for different traversals of the exact same level, all the while still satisfying 

criteria 1 and 2. 

To satisfy criteria 1 for the "Flower Hunter" game, we needed to endow the agent with the ability 

to navigate a level. To do so, the agent needs to have an internal map of the level. The work from 
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WP3 already provides map navigation, but having criteria 2 already in mind, we decided it would 

be best if the agent was able to build the map as it traverses the level as opposed to having 

access to the totality of the level map from the beginning. An agent that knows from the beginning 

where all items are will not have an incentive to explore and will head straight to where it desires, 

something that only the luckiest of players will be able to do. This isn't to say there aren't situations 

where giving the full map won't be a solution as well, as for example to simulate a player that is 

playing a level for a second time and already knows where things are located. But this could also 

be simulated by having the agent play the level twice while saving the map from one play-through 

to the other. We might even have the agent do this several times if it keeps dying before reaching 

the end goal, something that real users often do in difficult games. 

 

Figure 7: Sequence of 3 moments of the agent's traversal of Map 2 (Fig. 3). On the left side, the 

generated internal navigational graph of the agent. On the right side, the agent’s position in the "Flower 

Hunter" game. As the agent traverses the level, it expands its navigational graph, as can be seen in the 
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evolution from 1) to 2) to finally 3). In all of the shown navigational maps, there are still areas of the map 

left unexplored given that the agent hasn't yet visited them. 

 

Given that the objective of the developed agents was to test the game, we decided to build the 

map in a way that would most easily explore and detect errors in the map generation itself. We 

did so by using the game engine's collision detection. We created a square object in the game of 

a set dimension. The dimension of this square corresponded to the granularity of the map we 

would generate. We then iterated this square over all non-overlapping positions on the field of 

view of the agent, checking at each iteration if the square collided with any object. If no collision 

is detected, the position of the square is added to a "free positions graph". All adjacent nodes of 

this graph are connected. In this way, the agent can run classical path finding algorithms on the 

graph, like Dijkstra's algorithm, in order to navigate the level. The agent navigating the map and 

the generated internal navigational graph can be seen on Fig. 7. 

Having found a solution to the problem of navigating the map, it was now trivial to make the agent 

move towards objects and fight enemies. But when should the agent do these things? When 

should the agent fight enemies? When should it collect coins or rice cakes instead? The final 

objective of the game was finding the flower, but there were many sub-objectives in the game that 

could be pursued as well. A player might decide to kill every enemy in the game or to ignore 

enemies and focus on collecting coins instead. This choice between what sub-objective to pursue 

is one of the things that makes different users behave differently. We therefore decided to emulate 

this by defining a set of parameters that would encode the behaviour of the agent and the 

preferences the agent had regarding the many possible objectives in the "Flower Hunter" game. 

The possible objectives were: exploring; reaching the flower; killing enemies; collecting coins; and 

collecting rice cakes. Having such objectives in mind, the parameters used were the following: 

 

Each of these parameters was given a value between 0 and 10. Parameters 1 to 5 encoded the 

priority of the several possible goals that the agent could pursue. Parameters 6 and 7 were 

different. Parameter 6, Randomness, controlled whether the agent was deterministic or 

stochastic. A Randomness of 0 meant the agent was fully deterministic on choosing its priorities 
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according to the parameters. A value of 10 meant the agent chose its priorities at random, 

regardless of the values of the other parameters. Values between 1 and 9 meant the agent chose 

it's priorities in a probabilistic way, as is detailed in Equation 1.7. Parameter 7 was a conditional 

parameter. Rice cakes provided health to the player, so we wanted to have a way to allow the 

agent to only gather rice cakes when its health was getting low. Parameter 7 translates how much 

the health value influences the interest of the agent on gathering rice cakes. Other such 

conditional parameters could be added and are likely to be added in future versions of the agents. 

The probability value of the agent pursuing each of the possible goals was given by: 

 

with distance(x) returning the distance to the nearest object of type x, MaxH being the maximum 

health of the player, H the current health of the player and: 

 

We can then define the probabilistic weight of the agent pursuing any one of the five possible 

goals, P(goal), as: 

 

where: 

 

In this way, we have defined the priorities of the agent based on parameters. Having also defined 

behavioural functions for the pursuit of each goal, we now have an agent that satisfies both 
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behavioural criteria 1 and 3. We are currently working on using this work to also satisfy criteria 2, 

as will be discussed on Section 4 of this document. 

The code pertaining to this section along with instructions on how to use it can be found on the 

GitHub repository [14]. The instructions can also be found in Annex A1. 

 

 

Links and References: 

Source code: [14] https://github.com/iv4xr-project/PAD_emotion_game 

Expected Publications:  

Pedro M. Fernandes, Manuel Lopes, Rui Prada, Generating Behaviour for Testing UX. Manuscript 

in preparation. 

 

CREATING USER PROFILES BASED ON TRACES 

 

In addition to modelling components of UX, we need agents that are capable of interacting with 

the system under test in order to test it. Moreover, for UX testing, we require that such agents 

behave in “human-like” ways. 

We have shown in Section 3.2 a way of generating such behaviour based on parameterized 

agents. In this section, we will present an approach based on learning from observed behaviour, 

more precisely player traces. This learning approach is defined as apprenticeship learning, and 

in order to perform it we used the Inverse Reinforcement Learning (IRL) formulation. IRL as is 

originally defined in [15] and as the name implies, is to reverse the goal of standard Reinforcement 

Learning (RL) problems. In the standard RL, the goal is to generate policies, in IRL the goal is 

flipped meaning we intend to generate a reward from a given policy. 

We described this problem as the following: 

Given: 

• 1) measurements of an agent’s behaviour over time, in a variety of circumstances 

• 2) if needed measurements of the sensory inputs to the agent 

• 3) if available, a model of the environment 

Obtain: The reward function being optimised 

This is one of the principal components of our approach. 

 

 

https://github.com/iv4xr-project/PAD_emotion_game
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Fig 1. Diagram of the taken approach. First we take player traces and perform clustering to get 

the original profiles. Then with the clusters we perform IRL just to generate policies that illustrate 

said profiles. Finally we test them and compare the agent performance to that of original traces. 

 

The environment that we decided to use, to train and test these agents, was the "Flower Hunter" 

game that was presented in section 3.1.1. We decided to use this environment since it had an 

associated dataset composed of several player traces which might reveal different player 

behaviours. Also since it is a part of the same project, the work done here can be used in other 

components of WP4. Finally, since this game was made in Python, it was easier to implement 

machine learning algorithms.  

The dataset as mentioned before is composed of 264 traces that were collected from an 

experiment that involved 88 participants. Each trace is composed of 3 files: one where the player 

positions are recorded, another where all actions are recorded and finally one that stores the 

evolution of the input values (these can also be found in section 3.1.1). 

Directly using all 264 traces on the IRL training led to unsatisfactory results, since the dataset isn't 

very homogeneous. We have different players (88 in this case) which might have different inner 

goals and ways of playing. Using all 264 traces at the same time generated very confusing agent 

policies. 
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To overcome this problem we first needed to sort the available player profiles. To achieve this we 

decided to apply a clustering procedure in order to group the players into profile clusters according 

to their performance. In order to create the clusters, we took 4 inputs from the available list, that 

we understand to be the most relevant ones, such as: 

● Distance to objective  

● HP 

● Coins gathered 

● Kills 

Since the traces come from different levels that have different element quantities (example, 

number of enemies, in one level there are only 2 enemies, and in other there are 30), we decided 

to normalise the inputs that are connected to these elements, in this case Coins gathered and 

Kills. 

When talking about the clustering algorithm used, we tested 3 different algorithms that were based 

on different clustering models, more specifically k-means, expectation-maximisation (EM) and 

hierarchical. Then we evaluated those algorithms using 2 metrics: mean square error (MSE) and 

silhouette score. The EM algorithm presented the best results, so it was chosen for our approach. 

With this algorithm we obtained 10 possible clusters. 

 

Regarding IRL, instead of using the original implementation as defined in [15], we opted for our 

approach to be based on [16], in a technique named Maximum Entropy(MaxEnt) IRL. 

As the name implies, this approach is based on the principle of max entropy. This principle states 

that: the most appropriate distribution to model a given set of data, is the one with highest 

entropy among all those that satisfy the constraints of our prior knowledge. 

In the case of the IRL method introduced in [16], MaxEnt describes a method of matching feature 

expectations between observed paths and optimal paths for recovered reward functions. In other 

words, if we generate a policy that is considered optimal for the recovered reward function, then 

it is expected that on average paths, generated by this policy, are equal to those of the optimal 

policy for the true reward function. 

Regarding the model used to describe the game environment, we decided to use two MDPs: one 

for the navigation, where each agent state corresponds to a valid position in the game map, and 

the action space corresponds to movement in the 2D axis (RIGHT, LEFT, UP and DOWN) and 

the empty action STAY. For the combat MDP, we considered a more abstract approach for the 

state space. Here each state is represented as a combination of two features, agent HP, and 
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distance to the closest enemy. For this MDP the action space is composed of following actions: 

moving towards, and away from the enemy, attacking the enemy and the empty action STAY. 

 

In our approach, the agent will change from navigation mode to combat mode when an enemy is 

closer to the agent than a certain threshold. Then it will change back to navigation if the enemy is 

defeated or farther away from the agent. 

 

As for the results obtained with this work, we were capable of recreating some of the profiles 

described by the clusters, although we encountered some limitations regarding the agent 

navigation. In table 1 and 2 we show some of the best results that we obtained. 

 

  level 

  

Time 

 

Coins 

collect  

Enemies 

killed  

HP map 

coverage 

Agent 1 1 28 1 0 100 21.57% 

Cluster 1 1 34 1 0 100 22.72% 

Table 1. The profile found in cluster 1 is of players that move straight towards the final objective. 

We can see that our agent collected the same number of coins, explored a similar percentage of 

the level, and took a similar time to reach the end. From these results we can see that the agent 

was successful in capturing this profile. 

 

 

  level 

  

Time 

 

Coins 

collect  

Enemies 

killed  

HP map 

coverage 

Agent 5 3 26 0 8 0 22.51% 

Cluster 5 3 26 0 2 0 17.62% 

Table 2.The profile found in cluster 5 is of players that died right at the beginning of level 3. 

From these results we can see that the agent was successful in capturing this profile, since it 

died almost at the same time step, although our agent was more efficient during combat. 

 

In terms of future work, there are still ways in which our implementation can yet be improved. One 

is to change the model used in the navigation mode, since the original one is based on level 

positions, making it impossible for the obtained rewards\policies to be used in levels with different 

position layouts. Another component that needs closer inspection and improvements is the cluster 
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solution. Some profiles revealed within that solution were shown to be very similar between each 

other, which hints that a deeper cluster analysis is needed. 

 

Links and References 

[15] Ng, Andrew Y., and Stuart J. Russell. "Algorithms for inverse reinforcement learning." Icml. 

Vol. 1. 2000. 

[16] Ziebart, Brian D., et al. "Maximum entropy inverse reinforcement learning." Aaai. Vol. 8. 

2008. 

 

DIFFICULTY ESTIMATION 

 

The difficulty of a level, and more importantly, the progression of difficulty of a series of levels, 

can have a significant impact on the user experience and learnability of a game. As such, we are 

developing methods to rank a series of levels in terms of their difficulty.  

We have decided to use different types of errors as a way to measure the difficulty of a level. The 

main rationale behind this approach is that a level can be considered more difficult than another 

if the same degree of errors to the perfect sequence of actions leads to a worse outcome. For 

example, if a random timing error introduced to a perfect gameplay leads to the agent failing to 

complete a level 70% of the time whereas it only leads to the agent’s failure 30% of the time in 

another level, we consider that the first level is harder than the second, at least regarding timing 

related mistakes from the player. 

We have implemented 3 different error generation methods and used them to order a number of 

levels of a platformer game in terms of difficulty. The methodology and results for this study can 

be found on Annex A3. The code along with instructions on how to use it can be found on the 

project’s GitHub repository [17]. 

 

Links and References 

 

Source code: [17] https://github.com/iv4xr-project/difficultysch 

 

 

https://github.com/iv4xr-project/difficultysch
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AUTOMATED COGNITIVE-LOAD ESTIMATION 

 

A significant part of XR user experience results from the interaction of each user with the system 

while solving a task in the environment. During interaction with an XR system, each user has 

different exchanges while navigating through the design space of the system, which will create 

distinct user experiences (UX). Aside from the emotions and social motivations, cognitive abilities 

also impact appraisal, and, indirectly, how the user navigates the space. Being able to understand 

how the interactions reflect these dimensions of the experience would help designing more 

personalised systems, resulting in better UX. 

This work focuses on Cognitive Load, meaning the amount of information a person is 

conscientiously processing at a given moment. The cognitive load has a close relationship with 

attention mechanisms. We aim to create a toolset in the context of automatic play-testing that we 

can extend to other types of systems. The toolset, based on the TBRS (Time-Based Resource 

Sharing) [18] memory model, aims at providing a measure of the cognitive load (a percentage) 

that the user is expected to experience while going through a particular task in a specific context. 

Autonomous agents navigating and exploring a virtual environment need some parameterisation 

of what grabs the agents’ attention (e.g., interacting with an object or dodging enemies’ attacks). 

We call these “attention-grabbing events”, measured in seconds (duration of the event). The 

toolset will provide a set of methods (API) that need to be added/called from the code of the 

software undergoing testing, each time an attention-grabbing event occurs.  

After finalising a task, the toolset will compute an estimate for the cognitive load experienced by 

the user, based on the sum of the attention-grabbing events, and the total duration of the task. 

We can integrate this value into automated testing procedures by using assertions in the code 

that check whether the estimated value of the cognitive load is within a specific desired range. If 

not, the toolset will be able to present a short report to identify possible problems with the current 

implementation (based on the data gathered) and shed some light on the direction to take in future 

development.  

To evaluate our model, we created the game “Way-out” (Figure 8), in which the player is escaping 

from a small underground complex. We designed the game to allow for the parameterisation and 

control of several attention-grabbing events, and the manipulation of several dimensions of the 

experience, such as the time required to navigate through the game, the complexity of the task 

based on the number of interactions required to overcome them, as well as the number of items 

a player needs to keep in mind to solve the different puzzles. By comparing the reported cognitive 

load of the participants to the value computed by the TBRS theoretical model, we aim at 
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evaluating whether this model is an appropriate predictor of the cognitive load reported by the 

players for the whole experience.  

We conducted a user study which showed that the attention grabbing events are correlated with 

higher reported cognitive load. However, our time manipulation was not successful as the game 

is self-paced.  

 

 

Figure 8: Screen shots from the ‘Way out’ game 

 

  

During the second year, we are working on a plugin that allows for a more fine-grained measure 

of cognitive load. The plugin introduces a secondary task in the game. In the secondary task, 

players need to press a predefined button every time a certain event happens, for example, when 

a red dot appears on the screen. Increased reaction times to the secondary task, i.e. longer time 

intervals between the stimuli and the response, indicate higher cognitive load. This type of task 

has the advantage of allowing us to pinpoint areas in the game where the user experiences higher 

cognitive load and we can relate them to the concentration of attention grabbing events.  We will 

start by using the same game, “Way-Out'' because we already have information on the overall 

cognitive load imposed by the levels we tested and information on the attention grabbing events. 

We are planning a new user study to evaluate our model.  
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Because we are still testing our model and developing the plugin, we have the code available on 

GitHub, but we do not yet have a user-friendly version. For delivery 4.3 we aim to have a tutorial 

for developers/designers that want to use the plugin to check the Cognitive load imposed on users 

by their systems. 

We plan to submit a journal article detailing our first user study in the beginning of 2022 and will 

work to publish the results of our new study.  

 

Links and References 

References: 

[18] Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working 

memory. The cognitive neuroscience of working memory, 455, 59-80. 

 

Project Github:  

https://github.com/albertoramos1997/WayOut  

Video(s):  

Vídeo Way Out (Lever Puzzle): The video shows the four versions of the "lever puzzle". In this 

puzzle, the player needs to collect the missing levers, add them to a machine, and activate the 

correct levers to open the door to the next room. The video also shows the inventory (backpack) 

and the notebook, where players can store hints about the different puzzles.  

 

https://www.youtube.com/watch?v=6LSi81yiB28&t=18s&ab_channel=AlbertoRamos 

 

Vídeo Way Out (Orb Puzzle): The video shows the four versions of the “orb puzzle”, which is the 

final puzzle of the game. Throughout the rooms, the player finds different orbs in stands. Each 

orb has a different colour and each stand has a symbol. The player has four stands with symbols 

on the final room, and they need to match the symbols to the colours. Once all orbs are in the 

correct stand, the player needs to activate the buttons (by pressing the symbols) in a predefined 

order to win the game. 

 

https://www.youtube.com/watch?v=8ge565wPE9I&t=21s&ab_channel=AlbertoRamos 

 

Expected Publications: 

[19] Ramos, A., Couto, M., Martinho, C.  (2021). Assessing Players’ Cognitive Load in Games. 

Manuscript in preparation to be submitted to a journal.  

https://github.com/albertoramos1997/WayOut
https://www.youtube.com/watch?v=6LSi81yiB28&t=18s&ab_channel=AlbertoRamos
https://www.youtube.com/watch?v=8ge565wPE9I&t=21s&ab_channel=AlbertoRamos
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VERIFICATION OF INTERACTION PROPERTIES 

 

On D4.1, we presented our initial work on the verification of interaction properties between two 

players or agents. We have further consolidated this work by analysing the problem from a 

different perspective. 

Our goal is to verify if certain behaviours can occur in a specific game level and if so, to measure 

the level’s susceptibility for those behaviours. To simplify, we decided to start with the 

collaboration behaviour. In other words, we are trying to evaluate how collaborative a game level 

is. 

Our approach to address the problem was to create three types of agents and use their learned 

behaviours to evaluate a game level. Each level has a set of buttons, some of them unlock doors 

to other rooms, while others are target buttons. The goal of each level is to press all target buttons. 

The scenarios are loaded from a .txt file. 

The code for this project can be found on the project’s GitHub repository [20]. The GridWorld 

class sets up the environment for the agents to learn their policies or to simply execute learnt 

policies. Therefore, it includes methods such as: 

● Reset or RandomReset 

● CheckGoal 

● GetState (GetStateFullObservability, GetStatePartialObservability) 

● Learn (LearnDecentralized, LearnCentralized) 

● Step (StepSingleAgent, StepDecentralized, StepCentralized) 

● EvalAgents (EvalAgentsDecentralized, EvalAgentsCentralized) 

● Render 

● WriteAgentsQtableToFile 

● LoadAgentsQtableFromFile 

As previously mentioned, three types of agents were developed: the centralised, the decentralised 

and the single agents. The following characteristics were common to all agents: 

● Action space is [UP, DOWN, LEFT, RIGHT, PRESS, NOTHING]. 

● Action selection is done with the Egreedy algorithm and when choosing the current best 

action for a certain state, ties are solved randomly. 

○ E (or epsilon) decays linearly from 1 to MIN_EPSILON (set as 0.05) during 70% of 

the episodes. The last 30% of the episodes, E remains at 0.05. 

 

● Rewards: 
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○ 100 for reaching the goal 

○ -0.4 when choosing NOTHING 

○ -1 for any other action 

○ Notes: the reward of doing NOTHING constrains the time it takes for the agents to 

learn. 

● Learning algorithm is DynaQ with 10 planning steps. 

 

The centralised agent is a single entity controlling the actions and knowledge of two players. 

The state is a string with [pos_x_a0] + [pos_y_a0] + [pos_x_a1] + [pos_y_a1] + [state of all the 

buttons]. Because it maps the position of the two players (and all the buttons) it is accessible with 

a method called GetStateFullObservability. 

The possible action is a numeric value mapping the action of each player. For instance 0 

represents the player0 doing UP and player1 doing UP, while 1 represents the player0 doing UP 

and player1 doing DOWN. 

The rewards were doubled to have fair comparisons with other agents. 

The decentralised agents are two distinct instances, each representing one player. 

The state is a string with [pos_x] + [pos_y] + [state of all the buttons]. Because it maps the position 

of only one player, it is accessible with a method called GetStatePartialObservability. 

These agents learn in a decentralised way but they learn at the same time in the same 

environment. Therefore, what happens is that the agents actually learn to cooperate if that gives 

them a higher reward. 

The single agents are independent of one another as they learn alone in the environment and 

therefore, the learnt policies correspond to an individualist behaviour. 

The learning method is in the Agent class file: LearnDynaQ. When implementing this type of 

agent, a problem occurred while evaluating two simultaneous agents of this type in the same 

environment. As soon as one of the agents opened one door, the other no longer knew what to 

do as it had never seen that state. To address this issue, at learning-time, instead of resetting the 

agents to always start in the same state, we used the method RandomReset. This method, 30% 

of the time, resets the environment to a random state (including position and button states). 

 

Running Instructions: The main.py can be executed as follows: 

● main.py -learn [AGENT_FLAG] [SCENARIO] 

○ In this mode, the agents learn their policies for that specific scenario and, in the 

end, the Qtables are saved to a .txt file in the /policies/ folder. 
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● main.py -run [AGENT_FLAG] [SCENARIO] 

○ In this mode, the agents load the Qtables saved in the /policies/ folder (if any) and 

execute the learnt actions step by step, while the console log visually displays their  

behavior. 

● main.py -compare [AGENT_FLAG] [AGENT_FLAG] [SCENARIO] 

○ In this mode, you will get some evaluation measures comparing the two types of 

agents (given in the execution parameters). 

[AGENT_FLAG] can either be -centralised, -decentralised, or -singleagents 

[SCENARIO] can either be -s1, -s2, or -s3 

 

These following measures were used for the comparison of the agent’s behaviours. 

Reward difference (Δ reward): Absolute difference between the accumulated rewards of the two 

types of agents. The accumulated rewards are returned by the EvalAgents method. For the 

centralised agents, the output of their behaviour is joint in one accumulated reward for the two 

players. However, for both the decentralised and single agents, the output of their behaviour is 

the accumulated reward for each player, which is then summed. For this reason, the rewards of 

the centralised agents are doubled or “as summed”. 

Hitmap per Player Difference (Δ hitmap / player): Average difference between the behaviour 

trace of a player for each type of agent (X and Y). The method CompareHitmapsPerAgent 

receives the size of the grid, and the two traces of each type of agent. A trace is a list of positions, 

in which each two elements of the list are the position of the two players (agent0 followed by the 

position of agent1). Four zeros matrices with the size of the grid are created, one for each player 

(a0 and a1) of each type of agent (X and Y). While iterating over the traces, 1 unit is summed in 

the corresponding matrix cell each time a certain player of a certain type passed in that position 

of the grid. Then, the norm of the difference is calculated (numpy.linalg.norm) between each 

player of type X and the same player of type Y. Then the method returns the average of the two 

players. 

Because the hitmap difference might be substantially different for one player and not for the other, 

the hitmap difference for each player (a0 and a1) is written in the results table. The Δ hitmap per 

agent is the average between Δ hitmap a0 and Δ hitmap a1. 

Joint Hitmap Difference (Δ hitmap joint): Average difference between the behaviour trace of 

all the players for each type of agent (X and Y). The method CompareHitmaps does not compare 

for each player and instead creates a single hit map of where all players of a certain type have 

been. 
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Policies Difference (Δ policies): The policy matrix is binary as the agents have a deterministic 

behaviour. Instead of having a policy matrix for each player (as done for the hitmaps per player), 

here a single joint policy matrix was created for the two players (a0 and a1) as the centralised 

agents do by default. While for the centralised agents the policy matrix is obvious to get from the 

QTable (method GetPolicy), for both the decentralised and single agents it needs to be 

inferred/transformed. The method CreateJointPolicy does that, i.e., converts the two Qtables of 

the two players that have an action space of [UP,...,NOTHING] into a single Qtable (and therefore 

policy matrix) where the action space is [UP-UP,UP-DOWN,...,NOTHING-NOTHING]. 

 

* C vs D C vs S D vs S 

Scenario 1 Δ reward - 13.4 

Δ hitmap a0 - 5.9 

Δ hitmap a1 - 5.7 

Δ hitmap / player - 5.8 

Δ hitmap joint - 8.2 

Δ policies - 89.9 

Δ reward - 36.6 

Δ hitmap a0 - 10.2 

Δ hitmap a1 - 43.3 

Δ hitmap / player - 26.7 

Δ hitmap joint - 44.3 

Δ policies - 92.6 

Δ reward - 23.2 

Δ hitmap a0 - 8.9 

Δ hitmap a1 - 43.7 

Δ hitmap / player - 26.3 

Δ hitmap joint - 44.4 

Δ policies - 89.2 

Scenario 2 Δ reward - 1.4 

Δ hitmap a0 - 6.1 

Δ hitmap a1 - 5.6 

Δ hitmap / player - 5.8 

Δ hitmap joint - 8.2 

Δ policies - 179.5 

Δ reward - 7.0 

Δ hitmap a0 - 3.0 

Δ hitmap a1 - 3.0 

Δ hitmap / player - 3.0 

Δ hitmap joint - 4.2 

Δ policies - 229.5 

Δ reward - 8.4 

Δ hitmap a0 - 4.5 

Δ hitmap a1 - 5.5 

Δ hitmap / player - 5.0 

Δ hitmap joint - 7.1 

Δ policies - 171.1 

Scenario 3 Δ reward - 1.8 

Δ hitmap a0 - 4.3 

Δ hitmap a1 - 10.0 

Δ hitmap / player - 7.2 

Δ hitmap joint - 11.0 

Δ policies - 183.1 

Δ reward - 1.8 

Δ hitmap a0 - 4.1 

Δ hitmap a1 - 9.0 

Δ hitmap / player - 6.6 

Δ hitmap joint - 9.8 

Δ policies - 181.2 

Δ reward - 0 

Δ hitmap a0 - 1.4 

Δ hitmap a1 - 7.7 

Δ hitmap / player - 4.6 

Δ hitmap joint - 7.9 

Δ policies - 145.4 

Table 1: Table showing the comparison between the three agents. *C - centralised agents, D - 

decentralised agents, S - single agents 

 



 

D4.2 – 2nd prototype of SETAs 

WP4-D4.2      iv4XR                       28 

 

  
 

 

Scenario 1: The first scenario is interesting because a1 is trapped 

and the only way out is if a0 presses the button b2 (to open the door 

d2). Player a0 is capable of solving the level alone if he presses b1 

and then b3, which makes it possible for him alone to press the one 

and only goal/target button b4. 

The behaviour learnt by the centralised agents (C) corresponds to 

the collaborative behaviour, i.e., a0 presses b2 and a1 goes directly 

to the target button b4 (13 steps). What the single agents (S) have 

learned to do, because they train alone in the environment, is 

precisely the opposite, i.e., a1 does nothing while a0 presses b1, b3 

and finally b4 (43 steps). The decentralised agents (D), as mentioned 

before, have also learned cooperative behaviours as they are 

advantageous. However, because they don’t fully observe the 

environment (i.e., they don’t know the position of the other player), they take slightly more steps 

(20 steps) than the centralised agents. Specifically, in the centralised mode, a0 does not move 

much after pressing b2. Conversely, in the decentralised mode, a0 presses b1 after pressing b2. 

To sum up, C and D use both a collaborative strategy but D is slightly less efficient, and S uses a 

totally different strategy (that can be considered the least collaborative). 

Based on this subjective description of their behaviour (which you can also check by running 

main.py -run ... ), it was expected that numeric comparisons should highlight (1) higher differences 

between C vs S and D vs S than between C vs D. Moreover, it would be expected that (2) C vs S 

present a higher difference than D vs S. All the measures support the first expected result. 

However, the only measure that mirrors the second expected result is the comparison of rewards 

(Table 1). 

 

 

 

 

 

Scenario 2: In the second scenario, no player is blocked in a room and there are two target 

buttons. Each of the target buttons is much closer to one of the players than to the other. As the 
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target buttons are two and they are equally accessible to the players, to 

solve this level players can act in parallel, such as in two independent 

sub-tasks. 

The behaviour of the three types of agents is generically the same, i.e., 

a0 presses b1 and then b3, while a1 presses b2 and then b4. They slightly 

differ in the number of steps (C - 18 steps, D - 19 steps, S - 13 steps), but 

the expected numeric differences should be negligible (or zero by 

increasing the training time). 

All the measures support that the behaviours of the three types of agent 

act similarly (Table 1). 

 

Scenario 3: In the third scenario, there is only one target button and cooperation is advantageous 

to reach the goal slightly faster. In three modes, the learned 

behaviour generically corresponds to a0 pressing b1, a1 pressing 

b2 and then a0 is always the fastest to reach the target button b3.  

In both C and D, a0 is going towards b1, at the same time that a1 

is going towards b2. However, in C mode, a1 stays still after 

pressing b2, while a0 is going towards the target button. 

Conversely, in D mode, because the agents do not know the 

position of the other player, they both go towards the target button 

(34 steps). In the S mode, both players start the level going 

towards b1, which is visible because a1 starts moving upwards in the central corridor before a0 

reaches b1. As soon as d1 is open, a1 goes towards b2 and then both players go towards b3 to 

finish the level (34 steps). 

Overall all measures suggest the three behaviours were similar and close (Table 1). 

 

Links and references 

Project Github:  

[20] Github repository: https://github.com/iv4xr-project/rl-behaviors-verification 

 

VALIDATING THE PLOT OF INTERACTIVE NARRATIVE GAMES 

 

https://github.com/iv4xr-project/rl-behaviors-verification
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Many games and simulations include interactive dialogue. When the choices made during such 

dialogues impact the environment and possible future choices, then it is paramount that these 

interactive narratives are well tested to ensure a positive UX. 

As such, we have focused on interactive narrative games to develop a model consisting of a set 

of metrics for testing interactive dialogues. Using this model, we developed a prototype for the 

Story Validator tool. This tool allows game writers to experiment with different hypotheses and 

narrative properties in order to identify inconsistencies in the authored narrative and predict the 

output of different playthroughs with visual representation support. We conducted a series of user 

tests using the Story Validator, to investigate whether the tool adequately helps users identify 

problems that appear in the game’s story. The results showed that the tool enables content 

creators to easily test their stories, setting our model as a good step towards automated 

verification for assistance of authoring interactive narratives. 

More details, including the methodology and results from this study can be found on Annex A4. 

The code can be found on the project’s GitHub repository [21]. 

 

Links and references 

Project Github:  

[21] Github repository: https://github.com/iv4xr-project/in-story-validator 

 

  

https://github.com/iv4xr-project/in-story-validator
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CONCLUSIONS AND FUTURE WORK 

 

In this period, we continued our work on developing methods to measure and evaluate various 

aspects of the experience of the user during gameplay. Some of this work was a continuation of 

what had already been shown in deliverable 4.1, whereas some of it is novel work.  

During the third period of the project, we will finally integrate all these different methods into a 

single UX testing module, which will be integrated with the framework. Designers and testers will 

then be able to choose which of the methods they desire to use in order to test the UX of their 

system. A paper is currently being written to clarify how the several components which we have 

explored are related and how they can be used to provide a picture of UX. 

Aside from the components hitherto presented, we are further exploring the generation of 

behaviour for multi-agent scenarios. Our focus is on generating relevant interaction traces that 

represent the different ways in which users might interact with one another. 
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