V4 XR

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D4.2 - 2nd prototype of SETAs

ivdXR - WP4 - D4.2

Version 1.6

December 2021

D4.2 — 2nd prototype of SETAs \v4 X R

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2020

Actual Date 29/12/2020

Document Author/s Manuel Lopes, Marta Couto, Pedro Fernandes, Carlos Martinho,

Rui Prada, Luis Fernandes (INESC-ID), Saba Ansari (UU)

Version 1.6
Dissemination level Public
Status Final

This project has received funding from the European Union’s Horizon 2020 S
Research and innovation programme under grant agreement No 856716 Rl

WP4-D4.2 iVAXR i

D4.2 — 2nd prototype of SETAs \v4 X R

Document Version Control

Version Date Change Made (and if appropriate reason Initials of
for change) Commentator(s) or
Author(s)
1.0 03/12/2020 Initial document structure and contents MC, PF

Details on Appraisal model of emotions for
1.2 10/12/2021) SA
Automated PX testing

Details on behavioural generation, difficulty
1.3 15/12/2021 o]]]] PF
estimation and interactive narratives testing.

1.4 21/12/2021 Details on creating personas LF
15 22/12/2021 Changed the order of the sections PF
1.6 27/12/2021 Minor corrections RP

Document Quality Control
Version Date Comments (and if appropriate reason for | Initials of QA Person
QA change)
1.3 18/12/2020 Document review IS
1.6 27/12/2020 Document review RP

Document Authors and Quality Assurance Checks
Author Name of Author Institution
Initials
ML Manuel Lopes INESC-ID
MC Marta Couto INESC-ID
PF Pedro Fernandes INESC-ID

WP4-D4.2 ivAXR ii

D4.2 — 2nd prototype of SETAs

V4XR

CM Carlos Martinho INESC-ID
RP Rui Prada INESC-ID
LF Luis Fernandes INESC-ID
SA Saba Ansari uu
IS lan Saunter GW

WP4-D4.2

ivAXR

D4.2 — 2nd prototype of SETAs \v4 X R

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1
INTRODUCTION 2
SOFTWARE INCLUDED IN THIS DELIVERABLE 3
Appraisal models for UX assessment 3
Machine Learning and the PAD Model of Emotion 3
The Appraisal model of emotions for Automated PX testing 9
Generating Behaviour for UX Testing 12
Creating User Profiles Based on Traces 16
Difficulty estimation 20
Automated Cognitive-Load Estimation 21
Verification of interaction properties 24
Validating the Plot of Interactive Narrative Games 29
CONCLUSIONS AND FUTURE WORK 31
ANNEXES 32

WP4-D4.2 ivAXR iv

D4.2 — 2nd prototype of SETAs

EXECUTIVE SUMMARY

This deliverable is a software deliverable. In this document we provide an overview of the state
of the work on WP4, software links, and descriptions. We annexed papers and reports that
describe in more detail the development and results of the software.

Acronyms and Abbreviations

SETA | Socio-Emotional Test Agent
SUT System Under Test
XR Extended Reality
UX User Experience
RL Reinforcement Learning
WP4-D4.2 ivAXR

V4 XR

D4.2 — 2nd prototype of SETAs \v4 X R

INTRODUCTION

Work Package 4 focuses on developing socio-emotional test agents (SETAS) to aid the
systematic assessment of User Experience (UX) of Extended Reality (XR) systems. The SETA’s
will use well-established emotion appraisal theories and models to assess the emotional state;
they will cover social and behavioural variability to simulate a wide range of users; and use a
progression model allowing it to appraise UX-relevant user states over time.

To achieve these goals, we need to build several components. To create these components, we
need to understand the social and emotional experience of the user. We need comprehensive
profiles with social properties of different types of users. We also need information on how the
scenarios or type of interaction impact the user. We can then use the profiles to test software
automatically with the developed components.

Work on this task is on track. Task 4.2 was slightly delayed due to pandemic constraints that
made the planned user studies impossible to conduct. We were planning on collecting
physiological measures which required close contact with participants.

In this period the work was divided into four main components:
e study and development of models of user experience and social components of interaction
e study and development of behavioural models that fit the task of testing UX
e study and development of models of difficulty estimation of scenarios

e study and development methods for modelling user profiles

WP4-D4.2 ivAXR 2

D4.2 — 2nd prototype of SETAs \v4 X R

SOFTWARE INCLUDED IN THIS DELIVERABLE

APPRAISAL MODELS FOR UX ASSESSMENT

Machine Learning and the PAD Model of Emotion

The previous implementation of the UX testing agent (D4.1) relied on a two dimensional affective
model, based on the dimensions of Arousal and Valence. These two dimensions were updated
following a rule-based approach in order to represent the expected affective state of a user. To
improve upon this approach, we decided to use a 3-dimensional emotional model, the PAD model
of emotion [1], which describes human emotions based on three dimensions: Pleasure; Arousal;
and Dominance. We further decided to use machine learning (ML) instead of rules to predict the
expected emotional state of the agent.

By using machine learning instead of rules to model the evolution of the emotional dimensions,
the predictions will be based on that which real users reported feeling in similar or comparable
situations. With this, we aim to achieve a better predictive accuracy and a more reliable model. A

representation of the machine learning process used can be found on Fig. 1.

Training

Continuous
Self-Reporting

Expected
Predictive Model Emotional
Dimension

Figure 1: A graphical representation of the machine learning approach.

The use of the PAD model of emotion improves the granularity of the prediction, adding an extra
dimension, Dominance, to the two dimensions that were previously used (the previously used

Valence dimension being comparable to the Pleasure dimension). This means that instead of

WP4-D4.2 ivAXR 3

D4.2 — 2nd prototype of SETAs \v4 x R

using a core affect model, we are using a full emotional model, which has been used to classify
a considerable part of the human emotional spectrum [1].

To implement the previously mentioned improvements, a different game was used. The game
first used was too simple and failed to provide a good coverage of the emotional space. There
were no dangerous elements in the game, for example, which meant that it would be unlikely that

a user would experience fear.

NP: 100 Coins: @ Kills: @ Time: 11 NP: 100

HP: 100 Coins: @ Kills: @ Time: 18 HP: 100 1 Time: 71

Figure 2: Screenshots of the "Flower Hunter" game. The player, represented by a black and yellow ball,
needs to traverse a field riddled with enemies, health providing rice cakes, and coins, in order to find a
pink flower (shown on the bottom right screenshot). Once the player finds this flower, the game is over

and the player wins. If the player loses all its health points by touching enemies, then the game ends and

the player loses. The player can use a sword to fight and kill the enemies (shown in the bottom left

screenshot).

The game used, named "Flower Hunter", was inspired by old-school top-down 2D games like
Legend of Zelda. It is easily modifiable, fast-running, compatible with Python machine learning
libraries, and ultimately entertaining enough to motivate users to play it. Screenshots of the game
can be found on Fig. 2. This game is still far from a complex XR system, but the studies being
done here have never been done on simpler games or applications, so we have been forced to
build the foundations of the research ourselves. Once we have proven that our approach works

WP4-D4.2 ivdXR 4

D4.2 — 2nd prototype of SETAs \v4 X R

for a simpler game, we can expand and apply it to more complex test cases, as are the iv4XR
case studies (Space Engineers, etc...).

With a test-bed game and emotional model decided upon, it was time to define the inputs and
outputs of our machine learning model. The inputs would have to encapsulate all relevant
information about the game, whereas the outputs needed to relate to the three dimensions of the
PAD model of emotions.

Pertaining the inputs, we decided to use numerical values related to the player and the different

objects present in the game. The list of the inputs used is as follows:

° Distance to closest enemy

° Distance to closest rice cake (a collectible)
° Distance to closest coin (a collectible)
° Number of enemies in view

° Number of rice cakes in view

° Number of coins in view

° Sum of value/distance of enemies

° Sum of value/distance of rice cakes

° Sum of value/distance of coins

° Seconds since seeing enemy

° Seconds since seeing rice cake

° Seconds since seeing coin

° Distance to objective

° Health Points

° Coins gathered

° Kills

° Damage done

To train a machine learning model, we required information about the three emotional dimensions
of a player as he traversed the game, as we believed it would be more meaningful to the testers
and designers to know how the emotional dimensions evolved over time and space opposed to
only having a final estimate of the value for each dimension for the totality of the interaction
between the user and the system. Furthermore, the closest to continuous this information could
be, the better, as it would allow us to create a finely grained model.

To achieve this close to continuous annotation, user questionnaires couldn't be used.

Physiological data was an option, and might still be used in future work, but it was intrusive,

WP4-D4.2 ivAXR 5

D4.2 — 2nd prototype of SETAs \v4 x R

required specialised equipment, and we found no studies directly correlating physiological data
with the 3 dimensions of the PAD model. As such, we decided to use continuous, after the fact,
annotation, inspired by such works as [2] and [3].

This annotation worked as follows. The user, after playing a given level of the "Flower Hunter"
game, was asked to annotate one of the PAD emotional dimensions. She did so by seeing a
recording of the level he had just played while using the up and down arrows on a computer
keyboard to control a line on the screen, which represented the evolution of the emotional
dimension throughout the traversal of the level. Two screenshots taken during the annotation

process can be found on Fig. 4.

NP: 85 Coins: @ K{ls:2 Time: M HP: 100 Coins: @ Kills:2 Time: 30

Figure 4: Screenshots of the continuous annotation process used. The black line that is seen on the
screen was controlled by the user, going up or down according to the perception the user had of the

dimension being annotated having increased or decreased, respectively.

We chose to have each user annotate only one of the PAD dimensions. We did this both to spare
the user 3 consecutive annotations after playing a single level, but also to ensure the user kept in
mind the dimension that she was annotating without getting confused and inadvertently mixing
the dimensions. By annotating a single dimension, the user only had to remember a single
definition for the dimension being annotated, thus, in principle, ensuring more reliable annotations.
This came, however, at the cost of having only one of the dimensions annotated for each user
trace we had.

We conducted a study to collect data with 88 participants playing three "Flower Hunter" levels
and self-reporting their levels of a given PAD dimension. Each participant was randomly assigned
a dimension at the beginning of the experiment and given a definition of said emotional dimension.

The participants could only proceed with the experiment once they confirmed that they understood

WP4-D4.2 ivdXR 6

D4.2 — 2nd prototype of SETAs \v4 x R

the definition for their assigned emotional dimension. The levels used for the experiment can be
found on Fig. 3. In the end, we had 264 annotated gameplay traces.

Figure 3: The three maps used for the collection of data. As can be seen, all the maps had the same

topology yet the location and amount of objects differed between them.

The several input values and the output value were collected with a frequency of 8Hz. To tackle
the sequential nature of the data, we decided to translate the input and output into overlapping
slices of variable length (for example, one second), and using the variation of the values within
that slice of time to train the model instead of the absolute values themselves. An exception were
the input values related to the time elapsed since an event, which were also fed to the model in
their absolute form as to allow the model to be aware of long periods of time where a given even
didn't occur, for example, being aware that the player hasn't seen an enemy in over a minute.
The output slices were further classified as "increasing" or "decreasing/stable”, transforming a
prediction problem into a classification one. The absolute values for the emotional dimensions
varied greatly between different users and didn't provide much information by themselves. To
know if an emotional dimension was increasing or not was, however, a valuable information.

We then discarded all traces where there was no change to the emotional dimension throughout
the entire play-through. These were the only traces that were discarded, all others being used.

WP4-D4.2 iVAXR 7

D4.2 — 2nd prototype of SETAs \v4 X R

Lastly, there were considerably more instances of the "decreasing/stable" class than of the
“"increasing"” class. As such, the training data required balancing. From several methods tried,
balancing using random over sampling proved to give the best results.

After gathering and processing the data as described, we were now faced with a traditional binary
classification problem. We experimented with several different machine learning algorithms, such
as neural networks, decision trees and state vector machines. In the end, the random forests
algorithm was the one that provided the best results.

A different predictive model had to be trained for each one of the PAD emotional dimensions. As
such, we achieved a different accuracy for each dimension. For the Pleasure dimension, we were
able to achieve an accuracy of 72.8%. For the Arousal dimension, we were able to obtain a slightly
better 73.1% of accuracy. However, our approach fared considerably worse on predicting the
Dominance dimension, which we were only able to predict with around 60% accuracy.

The code pertaining to this section along with instructions on how to use it can be found on the

GitHub repository [5]. The instructions can also be found in Annex Al.

Links and References:

References:

[1] J. A. Russell and A. Mehrabian. Evidence for a three-factor theory of emotions. Journal of
research in Personality, 11(3):273-294, 1977.

[2] R. Plutchik. A general psychoevolutionary theory of emotion. In Theories of emotion, pages 3—
33. Elsevier, 1980.

[3] P. Lopes, G. N. Yannakakis, and A. Liapis. Ranktrace: Relative and unbounded affect
annotation. In 2017 Seventh International Conference on Affective Computing and Intelligent
Interaction (ACII), pages 158-163. IEEE, 2017.

[4] D. Melhart, A. Liapis, and G. N. Yannakakis. The effect game annotation (again) dataset.
arXivpreprint arXiv:2104.02643, 2021.

Source code: [5] _https://github.com/iv4xr-project/PAD_emotion_game

Expected Publications:
Pedro M. Fernandes, Manuel Lopes, Rui Prada, Learning Emotion from Continuously Annotated

User Traces. Manuscript in preparation.

WP4-D4.2 ivAXR 8

https://github.com/iv4xr-project/PAD_emotion_game

D4.2 — 2nd prototype of SETAs \v4 X R

The Appraisal model of emotions for Automated PX testing

In WP4, we are also investigating the use of a cognitive appraisal model of emotions for
automated agent-based player experience (PX) testing. The idea is explained more in our abstract
paper [6]. To meet this aim, at the beginning, we developed a formal model of appraisal for event-
based emotion. In particular, we discuss an event-based transition system to formalise relevant
emotions using Ortony, Clore, & Collins (OCC) theory of emotions [7]. The model is integrated on
top of iv4xr’s tactical agent programming library, to create intelligent PX test agents, capable of
appraising emotions in our first game case study called Labrecruits. The results are graphically
shown e.g. as heat maps. Visualisation of the test agent's emotions would ultimately help game
designers to produce contents that evoke a certain experience in players. The results of a level
called Labl are shown in Figures 4 to 6. Technical details of the model and the integration to
Aplib can be seen in the paper [8], published in EMAS@AMAS. The code of the model of emotion
is accessible through the project's Github repository [9]. The prototype version of automated
agent-based player experience (PX) testing along with the instruction is available on a separate

repository [10] which keeps getting updated.

Emotion over time in a simulated gameplay

10 4 — hope !
fear
—— satisfaction

= 0.6
i)
=
&
E 04 1

02 - N

0.0 4

0 00 200 300 400 500 GO0 700
time

Figure 4: The emotions’ timeline in Labl level setup.

WP4-D4.2 ivAXR 9

D4.2 — 2nd prototype of SETAs \v4 x R

|

| I G P

Figure 5: The heatmaps of negative triggered emotions

1717

Figure 6: The heatmaps of positive triggered emotions

WP4-D4.2 ivdXR 10

D4.2 — 2nd prototype of SETAs \v4 X R

Afterward, we concatenated our working prototype with the model based testing (MBT) package
from WP3, so now it is not only compatible with the last created version of iv4xr-core but also with
the last version of ivaxr-MBT. Currently we are working on having automated testing of emotional
requirements using model based testing. To do so, we are using extended finite state machines
provided by MBT and we are formulating emotional requirements asked by game designers into
linear temporal logic (LTL) formulas. We also use Buchi model checking existing in iv4xr-core and
search based testing existing in iv4xr-MBT to generate test suites to be used for the emotional
evaluation of the game-level under test against the given set of LTL emotional queries. This would
create a whole pipeline for automated PX testing. The pipeline is almost completed, with only the
LTL emotional evaluation part still being under development. The pipeline can be used along with
ivaxr-MBT and iv4xr-core to create a test suite e.g. using buchi model checker in iv4xr-core and
then using our model of emotions, you can get a visualised result of emotions for the level under
test. Currently, the PX testing package uses a random level generator in WP3 to have any desired
level for the test. The source code exists in the github repository in the branch called “pxtesingfr”
[10]. To work with it, it is needed to have iv4xr-core [11], Lab Recruits iv4xr-demo project [12] and
ivaxr-MBT [13].

Links and References

[6] Ansari, S. G. (2020, October). Toward automated assessment of user experience in extended
reality. In 2020 IEEE 13th international conference on software testing, validation and verification
(ICST) (pp. 430-432). IEEE.

[7] Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. cam (bridge
university press. Cambridge, England (1988)

[8] Ansari, S. G., Prasetya, I. S. W. B., Dastani, M., Dignum, F., & Keller, G. (2021). An Appraisal
Transition System for Event-driven Emotions in Agent-based Player Experience Testing.
Accepted in EMAS@AMAS, Springer (in press) arXiv preprint arXiv:2105.05589.

[9] https://github.com/iv4xr-project/jocc

[10] https://github.com/iv4xr-project/occ4pxtesting

[11]https://github.com/iv4xr-project/aplib

[12] https://github.com/iv4xr-project/ivixrDemo

[13] https://github.com/iv4xr-project/ivaxr-mbt

WP4-D4.2 ivAXR 11

https://github.com/iv4xr-project/jocc
https://github.com/iv4xr-project/occ4pxtesting
https://github.com/iv4xr-project/aplib
https://github.com/iv4xr-project/iv4xrDemo
https://github.com/iv4xr-project/iv4xr-mbt

D4.2 — 2nd prototype of SETAs \v4 X R

Expected Publications:
Ansari, S. G., Prasetya, |. S. W. B., Dastani, M., Dignum, F., & Keller, G. . Automated testing of

emotional requirements of a game level using model based testing, Manuscript in preparation.

GENERATING BEHAVIOUR FOR UX TESTING

As part of WP4, we are also exploring how to ensure the agent’s behaviour is as “human-like” as
possible, something which is necessary to ensure that the obtained UX measurements are
reliable. An agent that constantly repeats a single action that doesn't alter the state of the
environment might report a bad UX, but that doesn't necessarily mean the environment being
tested is at fault. UX testing agents will be required to behave like users or else any obtained
measurements of UX might prove meaningless. Generating behaviour and measuring UX will be
two faces of the same coin and both will need to work together if truly automated UX testing is to
be achieved. As such, we have decided to explore ways in which "human-like" or "persona-like"
behaviour can be generated.

The behavioural generator of our UX testing agents should satisfy the following criteria:

1. Allow the agent to achieve the goals that users strive to achieve when using the system
under test.

2. Pursue those goals in a way that resembles the behaviour of individual users or clusters
of users.

3. Provide variety, allowing for the agents to behave in different ways when presented with
the exact same scenario, just like different users often behave differently in the same

situation.

Each of this criteria presents its own set of problems. Considering the "Flower Hunter" game
presented in the previous section, to tackle criteria 1, we must endow the agent with the ability to
navigate the map, fight enemies, and search for items. To tackle criteria 2, we have to ensure that
the way in which the agent solves criteria 1 is similar to the way real users do it. Finally, our
solution must allow for different traversals of the exact same level, all the while still satisfying
criteria 1 and 2.

To satisfy criteria 1 for the "Flower Hunter" game, we needed to endow the agent with the ability

to navigate a level. To do so, the agent needs to have an internal map of the level. The work from

WP4-D4.2 ivAXR 12

D4.2 — 2nd prototype of SETAs

V4XR

WP3 already provides map navigation, but having criteria 2 already in mind, we decided it would

be best if the agent was able to build the map as it traverses the level as opposed to having

access to the totality of the level map from the beginning. An agent that knows from the beginning

where all items are will not have an incentive to explore and will head straight to where it desires,

something that only the luckiest of players will be able to do. This isn't to say there aren't situations

where giving the full map won't be a solution as well, as for example to simulate a player that is

playing a level for a second time and already knows where things are located. But this could also

be simulated by having the agent play the level twice while saving the map from one play-through

to the other. We might even have the agent do this several times if it keeps dying before reaching

the end goal, something that real users often do in difficult games.

HP: 100 Coins: @ K= @ Time:6

-

1)-

SULLLUILLIIL LTI

HP: 100 Coins: 0 K{ls: 2 Time: 20

JOLOIRNIRINIRIRIRIRINIRIN

SULHTULLTT T LT T T LT]

SULLULIILL LT]

LULLLUUTUL LU

2)-

3)-

Figure 7: Sequence of 3 moments of the agent's traversal of Map 2 (Fig. 3). On the left side, the

generated internal navigational graph of the agent. On the right side, the agent’s position in the "Flower

Hunter" game. As the agent traverses the level, it expands its navigational graph, as can be seen in the

WP4-D4.2

ivdXR 13

D4.2 — 2nd prototype of SETAs \v4 X R

evolution from 1) to 2) to finally 3). In all of the shown navigational maps, there are still areas of the map

left unexplored given that the agent hasn't yet visited them.

Given that the objective of the developed agents was to test the game, we decided to build the
map in a way that would most easily explore and detect errors in the map generation itself. We
did so by using the game engine's collision detection. We created a square object in the game of
a set dimension. The dimension of this square corresponded to the granularity of the map we
would generate. We then iterated this square over all non-overlapping positions on the field of
view of the agent, checking at each iteration if the square collided with any object. If no collision
is detected, the position of the square is added to a "free positions graph”. All adjacent nodes of
this graph are connected. In this way, the agent can run classical path finding algorithms on the
graph, like Dijkstra's algorithm, in order to navigate the level. The agent navigating the map and
the generated internal navigational graph can be seen on Fig. 7.

Having found a solution to the problem of navigating the map, it was now trivial to make the agent
move towards objects and fight enemies. But when should the agent do these things? When
should the agent fight enemies? When should it collect coins or rice cakes instead? The final
objective of the game was finding the flower, but there were many sub-objectives in the game that
could be pursued as well. A player might decide to kill every enemy in the game or to ignore
enemies and focus on collecting coins instead. This choice between what sub-objective to pursue
is one of the things that makes different users behave differently. We therefore decided to emulate
this by defining a set of parameters that would encode the behaviour of the agent and the
preferences the agent had regarding the many possible objectives in the "Flower Hunter" game.
The possible objectives were: exploring; reaching the flower; killing enemies; collecting coins; and

collecting rice cakes. Having such objectives in mind, the parameters used were the following:

1. EzploringPreference 5. CollectingRiceCakesPreference

2. ReachingFlowerPreference
6. Randomness
3. KillingEnemiesPreference

4. CollectingCoinsPreference 7. HealthHunger

Each of these parameters was given a value between 0 and 10. Parameters 1 to 5 encoded the
priority of the several possible goals that the agent could pursue. Parameters 6 and 7 were
different. Parameter 6, Randomness, controlled whether the agent was deterministic or

stochastic. A Randomness of 0 meant the agent was fully deterministic on choosing its priorities

WP4-D4.2 ivAXR 14

D4.2 — 2nd prototype of SETAs \v4 X R

according to the parameters. A value of 10 meant the agent chose its priorities at random,
regardless of the values of the other parameters. Values between 1 and 9 meant the agent chose
it's priorities in a probabilistic way, as is detailed in Equation 1.7. Parameter 7 was a conditional
parameter. Rice cakes provided health to the player, so we wanted to have a way to allow the
agent to only gather rice cakes when its health was getting low. Parameter 7 translates how much
the health value influences the interest of the agent on gathering rice cakes. Other such
conditional parameters could be added and are likely to be added in future versions of the agents.

The probability value of the agent pursuing each of the possible goals was given by:
V(Ezploring) = ExploringPreference x E (1.1)

ReachingFlower Pre ference

V(ReachingFlower) = + ReachingFlowerPreference x E (1.2)

distance(flower)

KillingEnemiesPreference

V(KillingEnemies) = distance(enemy) (1.3)
V (CollectingCoins) = CollecéznchmP’reference (1.4)
distance(enemy)
. . H lthH MaxH—H
V (CollectingRiceCakes) — Collecting RiceCakesPre ference ea unger X “yen- (1.5)

distance(cake) distance(cake)

with distance(x) returning the distance to the nearest object of type x, MaxH being the maximum

health of the player, H the current health of the player and:

0, if the world has been fully explored

1, otherwise

We can then define the probabilistic weight of the agent pursuing any one of the five possible

goals, P(goal), as:

P(goal) = (1 — Randomness) x (V(goal) x (IsMaz(V(goal)) + Randomness)) (1.7)

where:
1, if (V(goal) > V(goal;))Vgoal; # goal

IsMax(V(goal)) = (1.8)
0, otherwise

In this way, we have defined the priorities of the agent based on parameters. Having also defined

behavioural functions for the pursuit of each goal, we now have an agent that satisfies both

WP4-D4.2 ivAXR 15

D4.2 — 2nd prototype of SETAs \v4 X R

behavioural criteria 1 and 3. We are currently working on using this work to also satisfy criteria 2,
as will be discussed on Section 4 of this document.

The code pertaining to this section along with instructions on how to use it can be found on the
GitHub repository [14]. The instructions can also be found in Annex Al.

Links and References:

Source code: [14] https://github.com/iv4xr-project/PAD _emotion _game

Expected Publications:
Pedro M. Fernandes, Manuel Lopes, Rui Prada, Generating Behaviour for Testing UX. Manuscript

in preparation.

CREATING USER PROFILES BASED ON TRACES

In addition to modelling components of UX, we need agents that are capable of interacting with
the system under test in order to test it. Moreover, for UX testing, we require that such agents
behave in “human-like” ways.

We have shown in Section 3.2 a way of generating such behaviour based on parameterized
agents. In this section, we will present an approach based on learning from observed behaviour,
more precisely player traces. This learning approach is defined as apprenticeship learning, and
in order to perform it we used the Inverse Reinforcement Learning (IRL) formulation. IRL as is
originally defined in [15] and as the name implies, is to reverse the goal of standard Reinforcement
Learning (RL) problems. In the standard RL, the goal is to generate policies, in IRL the goal is
flipped meaning we intend to generate a reward from a given policy.

We described this problem as the following:

Given:

*» 1) measurements of an agent’s behaviour over time, in a variety of circumstances

« 2) if needed measurements of the sensory inputs to the agent

« 3) if available, a model of the environment

Obtain: The reward function being optimised

This is one of the principal components of our approach.

WP4-D4.2 ivAXR 16

https://github.com/iv4xr-project/PAD_emotion_game

D4.2 — 2nd prototype of SETAs \v4 X R

Traces

clustering

Navigation
Behaviours

State-Action State-Action
pairs pairs

Generate Generate
Navigaton Policies Combat Policies

Agent
policies
Gameplay
Agent
playthrought

Validate

perfromance

Fig 1. Diagram of the taken approach. First we take player traces and perform clustering to get
the original profiles. Then with the clusters we perform IRL just to generate policies that illustrate

said profiles. Finally we test them and compare the agent performance to that of original traces.

The environment that we decided to use, to train and test these agents, was the "Flower Hunter"
game that was presented in section 3.1.1. We decided to use this environment since it had an
associated dataset composed of several player traces which might reveal different player
behaviours. Also since it is a part of the same project, the work done here can be used in other
components of WP4. Finally, since this game was made in Python, it was easier to implement
machine learning algorithms.

The dataset as mentioned before is composed of 264 traces that were collected from an
experiment that involved 88 participants. Each trace is composed of 3 files: one where the player
positions are recorded, another where all actions are recorded and finally one that stores the
evolution of the input values (these can also be found in section 3.1.1).

Directly using all 264 traces on the IRL training led to unsatisfactory results, since the dataset isn't
very homogeneous. We have different players (88 in this case) which might have different inner
goals and ways of playing. Using all 264 traces at the same time generated very confusing agent

policies.

WP4-D4.2 iVAXR 17

D4.2 — 2nd prototype of SETAs \v4 X R

To overcome this problem we first needed to sort the available player profiles. To achieve this we
decided to apply a clustering procedure in order to group the players into profile clusters according
to their performance. In order to create the clusters, we took 4 inputs from the available list, that
we understand to be the most relevant ones, such as:

e Distance to objective

e HP

e Coins gathered

e Kills
Since the traces come from different levels that have different element quantities (example,
number of enemies, in one level there are only 2 enemies, and in other there are 30), we decided
to normalise the inputs that are connected to these elements, in this case Coins gathered and
Kills.
When talking about the clustering algorithm used, we tested 3 different algorithms that were based
on different clustering models, more specifically k-means, expectation-maximisation (EM) and
hierarchical. Then we evaluated those algorithms using 2 metrics: mean square error (MSE) and
silhouette score. The EM algorithm presented the best results, so it was chosen for our approach.
With this algorithm we obtained 10 possible clusters.

Regarding IRL, instead of using the original implementation as defined in [15], we opted for our
approach to be based on [16], in a technique hamed Maximum Entropy(MaxEnt) IRL.

As the name implies, this approach is based on the principle of max entropy. This principle states
that: the most appropriate distribution to model a given set of data, is the one with highest
entropy among all those that satisfy the constraints of our prior knowledge.

In the case of the IRL method introduced in [16], MaxEnt describes a method of matching feature
expectations between observed paths and optimal paths for recovered reward functions. In other
words, if we generate a policy that is considered optimal for the recovered reward function, then
it is expected that on average paths, generated by this policy, are equal to those of the optimal
policy for the true reward function.
Regarding the model used to describe the game environment, we decided to use two MDPs: one
for the navigation, where each agent state corresponds to a valid position in the game map, and
the action space corresponds to movement in the 2D axis (RIGHT, LEFT, UP and DOWN) and
the empty action STAY. For the combat MDP, we considered a more abstract approach for the

state space. Here each state is represented as a combination of two features, agent HP, and

WP4-D4.2 ivAXR 18

D4.2 — 2nd prototype of SETAs \v4 X R

distance to the closest enemy. For this MDP the action space is composed of following actions:
moving towards, and away from the enemy, attacking the enemy and the empty action STAY.

In our approach, the agent will change from navigation mode to combat mode when an enemy is
closer to the agent than a certain threshold. Then it will change back to navigation if the enemy is

defeated or farther away from the agent.

As for the results obtained with this work, we were capable of recreating some of the profiles
described by the clusters, although we encountered some limitations regarding the agent

navigation. In table 1 and 2 we show some of the best results that we obtained.

level Time Coins Enemies HP map
collect killed coverage
Agent 1 1 28 1 0 100 21.57%
Cluster 1 1 34 1 0 100 22.72%

Table 1. The profile found in cluster 1 is of players that move straight towards the final objective.
We can see that our agent collected the same number of coins, explored a similar percentage of
the level, and took a similar time to reach the end. From these results we can see that the agent

was successful in capturing this profile.

level Time Coins Enemies HP map
collect killed coverage
Agent 5 3 26 0 8 0 22.51%
Cluster 5 3 26 0 2 0 17.62%

Table 2.The profile found in cluster 5 is of players that died right at the beginning of level 3.
From these results we can see that the agent was successful in capturing this profile, since it

died almost at the same time step, although our agent was more efficient during combat.

In terms of future work, there are still ways in which our implementation can yet be improved. One
is to change the model used in the navigation mode, since the original one is based on level
positions, making it impossible for the obtained rewards\policies to be used in levels with different

position layouts. Another component that needs closer inspection and improvements is the cluster

WP4-D4.2 ivAXR 19

D4.2 — 2nd prototype of SETAs \v4 X R

solution. Some profiles revealed within that solution were shown to be very similar between each

other, which hints that a deeper cluster analysis is needed.

Links and References

[15] Ng, Andrew Y., and Stuart J. Russell. "Algorithms for inverse reinforcement learning." lcml.
Vol. 1. 2000.

[16] Ziebart, Brian D., et al. "Maximum entropy inverse reinforcement learning." Aaai. Vol. 8.
2008.

DIFFICULTY ESTIMATION

The difficulty of a level, and more importantly, the progression of difficulty of a series of levels,
can have a significant impact on the user experience and learnability of a game. As such, we are
developing methods to rank a series of levels in terms of their difficulty.

We have decided to use different types of errors as a way to measure the difficulty of a level. The
main rationale behind this approach is that a level can be considered more difficult than another
if the same degree of errors to the perfect sequence of actions leads to a worse outcome. For
example, if a random timing error introduced to a perfect gameplay leads to the agent failing to
complete a level 70% of the time whereas it only leads to the agent’s failure 30% of the time in
another level, we consider that the first level is harder than the second, at least regarding timing
related mistakes from the player.

We have implemented 3 different error generation methods and used them to order a number of
levels of a platformer game in terms of difficulty. The methodology and results for this study can
be found on Annex A3. The code along with instructions on how to use it can be found on the

project’s GitHub repository [17].
Links and References

Source code: [17] https://github.com/iv4xr-project/difficultysch

WP4-D4.2 ivAXR 20

https://github.com/iv4xr-project/difficultysch

D4.2 — 2nd prototype of SETAs \v4 X R

AUTOMATED COGNITIVE-LOAD ESTIMATION

A significant part of XR user experience results from the interaction of each user with the system
while solving a task in the environment. During interaction with an XR system, each user has
different exchanges while navigating through the design space of the system, which will create
distinct user experiences (UX). Aside from the emotions and social motivations, cognitive abilities
also impact appraisal, and, indirectly, how the user navigates the space. Being able to understand
how the interactions reflect these dimensions of the experience would help designing more
personalised systems, resulting in better UX.

This work focuses on Cognitive Load, meaning the amount of information a person is
conscientiously processing at a given moment. The cognitive load has a close relationship with
attention mechanisms. We aim to create a toolset in the context of automatic play-testing that we
can extend to other types of systems. The toolset, based on the TBRS (Time-Based Resource
Sharing) [18] memory model, aims at providing a measure of the cognitive load (a percentage)
that the user is expected to experience while going through a particular task in a specific context.
Autonomous agents havigating and exploring a virtual environment need some parameterisation
of what grabs the agents’ attention (e.g., interacting with an object or dodging enemies’ attacks).
We call these “attention-grabbing events”, measured in seconds (duration of the event). The
toolset will provide a set of methods (API) that need to be added/called from the code of the
software undergoing testing, each time an attention-grabbing event occurs.

After finalising a task, the toolset will compute an estimate for the cognitive load experienced by
the user, based on the sum of the attention-grabbing events, and the total duration of the task.
We can integrate this value into automated testing procedures by using assertions in the code
that check whether the estimated value of the cognitive load is within a specific desired range. If
not, the toolset will be able to present a short report to identify possible problems with the current
implementation (based on the data gathered) and shed some light on the direction to take in future
development.

To evaluate our model, we created the game “Way-out” (Figure 8), in which the player is escaping
from a small underground complex. We designed the game to allow for the parameterisation and
control of several attention-grabbing events, and the manipulation of several dimensions of the
experience, such as the time required to navigate through the game, the complexity of the task
based on the number of interactions required to overcome them, as well as the number of items
a player needs to keep in mind to solve the different puzzles. By comparing the reported cognitive

load of the participants to the value computed by the TBRS theoretical model, we aim at

WP4-D4.2 ivAXR 21

D4.2 — 2nd prototype of SETAs \v4 x R

evaluating whether this model is an appropriate predictor of the cognitive load reported by the
players for the whole experience.

We conducted a user study which showed that the attention grabbing events are correlated with
higher reported cognitive load. However, our time manipulation was not successful as the game

is self-paced.

w this may " s the buttons
![,:,;aopﬂ[fi‘f?g but i this sequence to
it for our oW :

good, trust mé.

Fach button is powered by 3 specific orb tat
changes everytine the night sequence i missed.

Figure 8: Screen shots from the ‘Way out’ game

During the second year, we are working on a plugin that allows for a more fine-grained measure
of cognitive load. The plugin introduces a secondary task in the game. In the secondary task,
players need to press a predefined button every time a certain event happens, for example, when
a red dot appears on the screen. Increased reaction times to the secondary task, i.e. longer time
intervals between the stimuli and the response, indicate higher cognitive load. This type of task
has the advantage of allowing us to pinpoint areas in the game where the user experiences higher
cognitive load and we can relate them to the concentration of attention grabbing events. We will
start by using the same game, “Way-Out" because we already have information on the overall
cognitive load imposed by the levels we tested and information on the attention grabbing events.

We are planning a new user study to evaluate our model.

WP4-D4.2 ivdXR 22

D4.2 — 2nd prototype of SETAs \v4 X R

Because we are still testing our model and developing the plugin, we have the code available on
GitHub, but we do not yet have a user-friendly version. For delivery 4.3 we aim to have a tutorial
for developers/designers that want to use the plugin to check the Cognitive load imposed on users
by their systems.

We plan to submit a journal article detailing our first user study in the beginning of 2022 and will

work to publish the results of our new study.

Links and References
References:
[18] Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working

memory. The cognitive neuroscience of working memory, 455, 59-80.

Project Github:

https://github.com/albertoramos1997/WayOut

Video(s):

Video Way Out (Lever Puzzle): The video shows the four versions of the "lever puzzle". In this

puzzle, the player needs to collect the missing levers, add them to a machine, and activate the
correct levers to open the door to the next room. The video also shows the inventory (backpack)
and the notebook, where players can store hints about the different puzzles.

https://www.youtube.com/watch?v=6LSi81yiB28&t=18s&ab channel=AlbertoRamos

Video Way Out (Orb Puzzle): The video shows the four versions of the “orb puzzle”, which is the
final puzzle of the game. Throughout the rooms, the player finds different orbs in stands. Each
orb has a different colour and each stand has a symbol. The player has four stands with symbols
on the final room, and they need to match the symbols to the colours. Once all orbs are in the
correct stand, the player needs to activate the buttons (by pressing the symbols) in a predefined

order to win the game.

https://www.youtube.com/watch?v=8ge565wPE9I&t=21s&ab channel=AlbertoRamos

Expected Publications:
[19] Ramos, A., Couto, M., Martinho, C. (2021). Assessing Players’ Cognitive Load in Games.

Manuscript in preparation to be submitted to a journal.

WP4-D4.2 ivAXR 23

https://github.com/albertoramos1997/WayOut
https://www.youtube.com/watch?v=6LSi81yiB28&t=18s&ab_channel=AlbertoRamos
https://www.youtube.com/watch?v=8ge565wPE9I&t=21s&ab_channel=AlbertoRamos

D4.2 — 2nd prototype of SETAs \v4 X R

VERIFICATION OF INTERACTION PROPERTIES

On D4.1, we presented our initial work on the verification of interaction properties between two
players or agents. We have further consolidated this work by analysing the problem from a
different perspective.
Our goal is to verify if certain behaviours can occur in a specific game level and if so, to measure
the level's susceptibility for those behaviours. To simplify, we decided to start with the
collaboration behaviour. In other words, we are trying to evaluate how collaborative a game level
is.
Our approach to address the problem was to create three types of agents and use their learned
behaviours to evaluate a game level. Each level has a set of buttons, some of them unlock doors
to other rooms, while others are target buttons. The goal of each level is to press all target buttons.
The scenarios are loaded from a .txt file.
The code for this project can be found on the project’s GitHub repository [20]. The GridWorld
class sets up the environment for the agents to learn their policies or to simply execute learnt
policies. Therefore, it includes methods such as:

e Reset or RandomReset

e CheckGoal

e GetState (GetStateFullObservability, GetStatePartialObservability)

e Learn (LearnDecentralized, LearnCentralized)

e Step (StepSingleAgent, StepDecentralized, StepCentralized)

e EvalAgents (EvalAgentsDecentralized, EvalAgentsCentralized)

e Render

e WriteAgentsQtableToFile

e LoadAgentsQtableFromFile
As previously mentioned, three types of agents were developed: the centralised, the decentralised
and the single agents. The following characteristics were common to all agents:

e Action space is [UP, DOWN, LEFT, RIGHT, PRESS, NOTHING].

e Action selection is done with the Egreedy algorithm and when choosing the current best

action for a certain state, ties are solved randomly.
o E (or epsilon) decays linearly from 1 to MIN_EPSILON (set as 0.05) during 70% of

the episodes. The last 30% of the episodes, E remains at 0.05.

e Rewards:

WP4-D4.2 ivAXR 24

D4.2 — 2nd prototype of SETAs \v4 X R

o 100 for reaching the goal

o -0.4 when choosing NOTHING

o -1 for any other action

o Notes: the reward of doing NOTHING constrains the time it takes for the agents to
learn.

e Learning algorithm is DynaQ with 10 planning steps.

The centralised agent is a single entity controlling the actions and knowledge of two players.
The state is a string with [pos_x_a0] + [pos_y_a0] + [pos_x_al] + [pos_y_al] + [state of all the
buttons]. Because it maps the position of the two players (and all the buttons) it is accessible with
a method called GetStateFullObservability.

The possible action is a numeric value mapping the action of each player. For instance 0
represents the playerO doing UP and playerl doing UP, while 1 represents the playerO doing UP
and playerl doing DOWN.

The rewards were doubled to have fair comparisons with other agents.

The decentralised agents are two distinct instances, each representing one player.

The state is a string with [pos_X] + [pos_y] + [state of all the buttons]. Because it maps the position
of only one player, it is accessible with a method called GetStatePartialObservability.

These agents learn in a decentralised way but they learn at the same time in the same
environment. Therefore, what happens is that the agents actually learn to cooperate if that gives
them a higher reward.

The single agents are independent of one another as they learn alone in the environment and
therefore, the learnt policies correspond to an individualist behaviour.

The learning method is in the Agent class file: LearnDynaQ. When implementing this type of
agent, a problem occurred while evaluating two simultaneous agents of this type in the same
environment. As soon as one of the agents opened one door, the other no longer knew what to
do as it had never seen that state. To address this issue, at learning-time, instead of resetting the
agents to always start in the same state, we used the method RandomReset. This method, 30%

of the time, resets the environment to a random state (including position and button states).

Running Instructions: The main.py can be executed as follows:
e main.py -learn [AGENT_FLAG] [SCENARIO]
o In this mode, the agents learn their policies for that specific scenario and, in the

end, the Qtables are saved to a .txt file in the /policies/ folder.

WP4-D4.2 ivAXR 25

D4.2 — 2nd prototype of SETAs \v4 X R

e main.py -run [AGENT_FLAG] [SCENARIQ]

o In this mode, the agents load the Qtables saved in the /policies/ folder (if any) and
execute the learnt actions step by step, while the console log visually displays their
behavior.

e main.py -compare [AGENT_FLAG] [AGENT_FLAG] [SCENARIO]

o In this mode, you will get some evaluation measures comparing the two types of

agents (given in the execution parameters).
[AGENT_FLAG] can either be -centralised, -decentralised, or -singleagents
[SCENARIQ] can either be -s1, -s2, or -s3

These following measures were used for the comparison of the agent’s behaviours.

Reward difference (A reward): Absolute difference between the accumulated rewards of the two
types of agents. The accumulated rewards are returned by the EvalAgents method. For the
centralised agents, the output of their behaviour is joint in one accumulated reward for the two
players. However, for both the decentralised and single agents, the output of their behaviour is
the accumulated reward for each player, which is then summed. For this reason, the rewards of
the centralised agents are doubled or “as summed”.

Hitmap per Player Difference (A hitmap / player): Average difference between the behaviour
trace of a player for each type of agent (X and Y). The method CompareHitmapsPerAgent
receives the size of the grid, and the two traces of each type of agent. A trace is a list of positions,
in which each two elements of the list are the position of the two players (agentO followed by the
position of agentl). Four zeros matrices with the size of the grid are created, one for each player
(a0 and al) of each type of agent (X and Y). While iterating over the traces, 1 unit is summed in
the corresponding matrix cell each time a certain player of a certain type passed in that position
of the grid. Then, the norm of the difference is calculated (numpy.linalg.norm) between each
player of type X and the same player of type Y. Then the method returns the average of the two
players.

Because the hitmap difference might be substantially different for one player and not for the other,
the hitmap difference for each player (a0 and al) is written in the results table. The A hitmap per
agent is the average between A hitmap a0 and A hitmap al.

Joint Hitmap Difference (A hitmap joint): Average difference between the behaviour trace of
all the players for each type of agent (X and Y). The method CompareHitmaps does not compare
for each player and instead creates a single hit map of where all players of a certain type have

been.

WP4-D4.2 ivAXR 26

D4.2 — 2nd prototype of SETAs \v4 X R

Policies Difference (A policies): The policy matrix is binary as the agents have a deterministic
behaviour. Instead of having a policy matrix for each player (as done for the hitmaps per player),
here a single joint policy matrix was created for the two players (a0 and al) as the centralised
agents do by default. While for the centralised agents the policy matrix is obvious to get from the
QTable (method GetPolicy), for both the decentralised and single agents it needs to be
inferred/transformed. The method CreateJointPolicy does that, i.e., converts the two Qtables of
the two players that have an action space of [UP,...,NOTHING] into a single Qtable (and therefore
policy matrix) where the action space is [UP-UP,UP-DOWN,...,NOTHING-NOTHING].

* CvsD CvsS DvsS
Scenario 1 | Areward - 13.4 A reward - 36.6 A reward - 23.2
A hitmap a0 - 5.9 A hitmap a0 - 10.2 A hitmap a0 - 8.9
A hitmap al - 5.7 A hitmap al - 43.3 A hitmap al - 43.7
A hitmap / player - 5.8 A hitmap / player - 26.7 | A hitmap / player - 26.3
A hitmap joint - 8.2 A hitmap joint - 44.3 A hitmap joint - 44.4
A policies - 89.9 A policies - 92.6 A policies - 89.2
Scenario 2 | Areward - 1.4 Areward - 7.0 A reward - 8.4
A hitmap a0 - 6.1 A hitmap a0 - 3.0 A hitmap a0 - 4.5
A hitmap al - 5.6 A hitmap al - 3.0 A hitmap al - 5.5
A hitmap / player - 5.8 A hitmap / player - 3.0 A hitmap / player - 5.0
A hitmap joint - 8.2 A hitmap joint - 4.2 A hitmap joint - 7.1
A policies - 179.5 A policies - 229.5 A policies - 171.1
Scenario 3 | Areward - 1.8 Areward - 1.8 A reward - 0
A hitmap a0 - 4.3 A hitmap a0 - 4.1 A hitmap a0 - 1.4
A hitmap al - 10.0 A hitmap al - 9.0 A hitmap al- 7.7
A hitmap / player - 7.2 A hitmap / player - 6.6 A hitmap / player - 4.6
A hitmap joint - 11.0 A hitmap joint - 9.8 A hitmap joint - 7.9
A policies - 183.1 A policies - 181.2 A policies - 145.4

Table 1: Table showing the comparison between the three agents. *C - centralised agents, D -

decentralised agents, S - single agents

WP4-D4.2 ivAXR 27

D4.2 — 2nd prototype of SETAs

Scenario 1: The first scenario is interesting because al is trapped
and the only way out is if a0 presses the button b2 (to open the door
d2). Player a0 is capable of solving the level alone if he presses bl
and then b3, which makes it possible for him alone to press the one
and only goal/target button b4.

The behaviour learnt by the centralised agents (C) corresponds to
the collaborative behaviour, i.e., a0 presses b2 and al goes directly
to the target button b4 (13 steps). What the single agents (S) have
learned to do, because they train alone in the environment, is
precisely the opposite, i.e., al does nothing while a0 presses b1, b3
and finally b4 (43 steps). The decentralised agents (D), as mentioned
before, have also learned cooperative behaviours as they are

advantageous. However, because they don't fully observe the

V4 XR

environment (i.e., they don’t know the position of the other player), they take slightly more steps

(20 steps) than the centralised agents. Specifically, in the centralised mode, a0 does not move

much after pressing b2. Conversely, in the decentralised mode, a0 presses bl after pressing b2.

To sum up, C and D use both a collaborative strategy but D is slightly less efficient, and S uses a

totally different strategy (that can be considered the least collaborative).

Based on this subjective description of their behaviour (which you can also check by running

main.py -run ...), it was expected that numeric comparisons should highlight (1) higher differences

between C vs S and D vs S than between C vs D. Moreover, it would be expected that (2) Cvs S

present a higher difference than D vs S. All the measures support the first expected result.

However, the only measure that mirrors the second expected result is the comparison of rewards

(Table 1).

Scenario 2: In the second scenario, no player is blocked in a room and there are two target

buttons. Each of the target buttons is much closer to one of the players than to the other. As the

WP4-D4.2 iv4XR

28

D4.2 — 2nd prototype of SETAs \v4 X R

target buttons are two and they are equally accessible to the players, to
solve this level players can act in parallel, such as in two independent
sub-tasks.

The behaviour of the three types of agents is generically the same, i.e.,
a0 presses b1 and then b3, while al presses b2 and then b4. They slightly
differ in the number of steps (C - 18 steps, D - 19 steps, S - 13 steps), but
the expected numeric differences should be negligible (or zero by
increasing the training time).

All the measures support that the behaviours of the three types of agent

act similarly (Table 1).

Scenario 3: In the third scenario, there is only one target button and cooperation is advantageous
to reach the goal slightly faster. In three modes, the learned
behaviour generically corresponds to a0 pressing b1, al pressing
b2 and then a0 is always the fastest to reach the target button b3.
In both C and D, a0 is going towards b1, at the same time that al
is going towards b2. However, in C mode, al stays still after
pressing b2, while a0 is going towards the target button.

Conversely, in D mode, because the agents do not know the

position of the other player, they both go towards the target button
(34 steps). In the S mode, both players start the level going
towards b1, which is visible because al starts moving upwards in the central corridor before a0
reaches bl. As soon as d1 is open, al goes towards b2 and then both players go towards b3 to
finish the level (34 steps).

Overall all measures suggest the three behaviours were similar and close (Table 1).

Links and references
Project Github:
[20] Github repository: https://github.com/iv4xr-project/rl-behaviors-verification

VALIDATING THE PLOT OF INTERACTIVE NARRATIVE GAMES

WP4-D4.2 ivAXR 29

https://github.com/iv4xr-project/rl-behaviors-verification

D4.2 — 2nd prototype of SETAs \v4 X R

Many games and simulations include interactive dialogue. When the choices made during such
dialogues impact the environment and possible future choices, then it is paramount that these
interactive narratives are well tested to ensure a positive UX.

As such, we have focused on interactive narrative games to develop a model consisting of a set
of metrics for testing interactive dialogues. Using this model, we developed a prototype for the
Story Validator tool. This tool allows game writers to experiment with different hypotheses and
narrative properties in order to identify inconsistencies in the authored narrative and predict the
output of different playthroughs with visual representation support. We conducted a series of user
tests using the Story Validator, to investigate whether the tool adequately helps users identify
problems that appear in the game’s story. The results showed that the tool enables content
creators to easily test their stories, setting our model as a good step towards automated
verification for assistance of authoring interactive narratives.

More details, including the methodology and results from this study can be found on Annex A4.

The code can be found on the project’s GitHub repository [21].

Links and references
Project Github:
[21] Github repository: https://github.com/iv4xr-project/in-story-validator

WP4-D4.2 ivAXR 30

https://github.com/iv4xr-project/in-story-validator

D4.2 — 2nd prototype of SETAs \v4 X R

CONCLUSIONS AND FUTURE WORK

In this period, we continued our work on developing methods to measure and evaluate various
aspects of the experience of the user during gameplay. Some of this work was a continuation of
what had already been shown in deliverable 4.1, whereas some of it is novel work.
During the third period of the project, we will finally integrate all these different methods into a
single UX testing module, which will be integrated with the framework. Designers and testers will
then be able to choose which of the methods they desire to use in order to test the UX of their
system. A paper is currently being written to clarify how the several components which we have
explored are related and how they can be used to provide a picture of UX.
Aside from the components hitherto presented, we are further exploring the generation of
behaviour for multi-agent scenarios. Our focus is on generating relevant interaction traces that

represent the different ways in which users might interact with one another.

WP4-D4.2 ivAXR 31

D4.2 — 2nd prototype of SETAs \v4 x R

ANNEXES

WP4-D4.2 ivdXR 32

D4.2 — 2nd prototype of SETAs \v4 X R

ANNEX Al

WP4-D4.2 ivAXR 33

D4.2 — 2nd prototype of SETAs \v4 X R

Running the Game

To run the game, run the "infinite_game.py" file. One way to do so is to write "python3 infinite_game.py" on the

command line while in the project's directory.

The game can be run in several different ways. Currently, this is done by commenting and uncommenting blocks of
code at the end of the "infinite_game.py" file. These blocks of code are easily identifiable by their headers. An
example block of code can be seen here:

map_name - “Level2"
num_directions

agent_type rule_based_agents.ParameterAgent

play_with_agent{agent_type, date_time, frame_rate, map_name, map_height, map_width, small_fontzy, medium_fontzy, big_fontzy, num_directions)

The possible modes of running the game as are follows:

1.

Reproduce the original data collecting experiment. This will have the user answer a number of questions and
then play three levels of the game, annotating one of the PAD dimensions after each level. The experiment
was in Portugal, as such, all text is written in Portuguese.

2. Play and annotate a single level.

3. Playing all the traces which are present on the "Generated_Traces" folder. Such traces can be hand made,

collected or generated using the functions present in the "trace_generator.py" file.

. Play a single level using a previously trained behavioural model. The behavioural_trainer() function in the

"predictor.py" file can be used to train a new behavioural model using the traces of the user study. This takes
a while and requires that the aforementioned traces are re-played following 2. since new data needs to be
collected from the traces which wasn't originally collected during the study.

. Play a single level using one of the agents defined in the "rule_based_agents.py" file. This is the method that

will run by default, using a parametrized agent. To experiment with the different possible behaviours for the
agent, one needs only to alter the parameter list defined on the ParameterAgent class in the

"rule_based_agent.py" file.

WP4-D4.1 ivAXR 34

D4.2 — 2nd prototype of SETAs \v4 x R

The Collected Traces

Under the folder "First_Study", you can find several gameplay traces. These traces were collected as part of a
study where users were asked to play 3 different levels of the game and then report their levels of the PAD
emotional dimensions. The levels played can be found on the "Maps" directory and were the "Levell.csv",
"Level2.csv" and "Level3.csv".

The traces are divided in 3 folders: one for each of the PAD emotional dimensions.

There are different types of traces in the folders, which can be identified by the name of the file. The final part of
the name is always a numeric unique identifier of the player preceded, when appliable, by the game map that the
trace corresponds to.

= Answers_Answers
o These files contain answers to a number of questions. The questions are in portuguese and can be found
on the file "Questions.txt"

Answers_Order
o These files describe the order on which the identified player played the 3 levels.
» Traces_Actions
o These files describe the actions taken by the player at each tick of the game. The actions are key presses
or releases. For example, "dd" means that the key 'D' was pressed down, whereas "du" means que key 'D'
was pressed up, that is, was released. ' ' means that the spacebar was pressed.
Traces_DIMENSION_NAME
o These files have the reported value of the corresponding emotional dimension for the given level and
player.

L

Traces_Perceptor
o These files have the values for each tick of the game of all the collected input variables that were
considered relevant for training the predictor.

Traces_Position
o These files have the x and y coordinates of the player throughout the trace

The names of the trace files end up with a unique number identifier, including the date of the trace, which can be
used to identify the player. The name also has, when applicable, the corresponding level.

Training a PAD Prediction Model Using the Traces Provided

To train a predictive model based on the emotional traces, run the "predictor.py" file. One way to do so is to write
"python3 predictor.py" on the command line while in the project's directory. This will train several models using
different parameters and provide the accuracy and confusion matrices for all of them.

WP4-D4.1 ivdXR 35

D4.2 — 2nd prototype of SETAs \v4 X R

ANNEX A2

WP4-D4.1 ivAXR 36

D4.2 — 2nd prototype of SETAs \v4 x R

WP4-D4.1 ivAXR 37

D4.2 — 2nd prototype of SETAs

An Appraisal Transition System for Event-driven
Emotions in Agent-based Player Experience Testing *

Saba Gholizadeh Ansari'0000-0002-7135-5605] 1 g wy B,
Prasetya] [0[)()0—0002—3421—4635]’ Mehdi Daslanil[WO‘OOOZ‘“’““‘OWJ, Frank
Dignum2 [0000—0002~51()3 48127] and Gabriele Kellerl [000040003—1442A5387]

! Utrecht University, Utrecht, the Netherlands, s.gholizadehansari@uu.nl
2 Umed University, Umea, Sweden

NOTE: This is a preprint of the article , accepted in 9th International Workshop on Engineering Multi-Agent Systems
(EMAS2021), held as a part of 20th International C on A Agents and Multi Systems (AAMAS).

Abstract. Player experience (PX) evaluation has become a field of interest
in the game industry. Several manual PX techniques have been introduced
to assist developers to understand and evaluate the experience of players in
computer games. However, automated testing of player experience still needs to
be addressed. An automated player experience testing framework would allow
designers to evaluate the PX requirements in the early development stages
without the necessity of participating human players. In this paper, we propose an
automated player experience testing approach by suggesting a formal model of
event-based emotions. In particular, we discuss an event-based transition system
to formalize relevant emotions using Ortony, Clore, & Collins (OCC) theory of
emotions. A working prototype of the model is integrated on top of Aplib, a
tactical agent programming library, to create intelligent PX test agents, capable of
appraising emotions in a 3D game case study. The results are graphically shown
e.g. as heat maps. Emotion visualisation of the test agent would ultimately help
game designers in creating content that evokes a certain experience in players.

Keywords: automated player experience testing, emotional modeling of game
player, formal model of emotion, intelligent agent, agent-based testing

2105.05589v1 [cs.SE] 12 May 2021

1 Introduction

arxiv

With the growing interest of industry and academia in assessing the quality in-use of
a system, product or service, the term User eXperience (UX), which refers to quality
characteristics related to internal and emotional state of a user, has emerged [19122].
UX evaluations become essential for designers to predict how users would interact with
a system. In the context of computer games, evaluating player eXperience (PX) plays
an important role to design a well-received game according to players’ preferences
and expectations. PX has different dimensions such as flow [21]], immersion [13]] and
enjoyment [8] which need to be addressed in a game design to evoke certain experience.

* This work is funded by EU H2020 Research and Innovation grant 856716, project iv4XR.

WP4-D4.1 ivdXR

V4XR

38

D4.2 — 2nd prototype of SETAs

WP4-D4.1

To assess the UX quality of a game, relatively novel UX evaluation methods such
as questionnaire methods, psycho-physiological measurement and eye-tracking have
been used [4122128]]. Currently, PX testing techniques not only impose excessive hours
of testing but they might also not be representative enough to cover all player types and
their possible emotions towards the game. Despite some attempts towards automation,
most of these techniques are either costly or still manually demanding [22/4128].
Moreover, similar to UX evaluations in non-game applications, most of PX testing
methods measure PX toward the end of the game development [214128]), so there is
still a need for more efficient techniques to do these evaluations in early stages of game
development. This allows PX problems to be addressed early during the development.

All of these factors led us to propose an automated approach for PX testing in
computer games; the envisaged main use case is to assist designers in early development
phases to develop their games more efficiently. To meet this aim, here, we proposes
to employ a computational model of players to automatically assess PX properties
of a computer game. Such a model is necessarily tied to cognition and emotion.
Additionally, emotions that a player can feel under certain conditions would eventually

V4XR

affect their overall experience. We, therefore, suggest to deploy a well-known theory of

emotions called OCC [17] to facilitate modeling players with respect to their emotions.

‘We present a formal model of the appraisal for OCC emotions using an event-based
transition system to serve as the foundation of our automated PX testing approach.
It deviates from existing formalization e.g. [IUI0/26]); they have never been used in
the software engineering (SE) domain. This might explain why these formal models
have not been utilized for UX/PX testing. A more fundamental reason is that these
models are given in the form of BD]E] logic [T5]. Although expressive, BDI logic is
more a reasoning model rather than a computation model. In contrast, our formalization
is given in terms of a transition system that directly specifies how to compute the
emotional state. Having a transition system provides an opportunity for developers
to simply deploy the model in their own systems, whereas a BDI-based formal
model would also need a BDI reasoning engine before it can be used for computing.
Furthermore, discrete transition systems have been used to do model checking in
software for decades. This opens a way to express UX/PX properties in e.g. LTL or CTL
[3]] and verify them through model checking or model checking related techniques.

A prototype implementation of the formal model is also presented in this paper,
along with a demonstration of what it can do on a small case study. The prototype
of appraisal model is integrated with Aplib [20]], a Java library for agent-based game
testing, to create an emotional test agent that uses the OCC theory for emotional
appraisal to assess PX requirements in games.

The paper is structured as follows: Section [2] introduces the OCC theory. Section
[3 gives an overview of the proposed framework architecture as well as the role
of appraisal in PX evaluations. Section [4] details the formal model of appraisal for
event-based emotions. Section [5 explains the early results of the framework in a 3D
case study. Section [f] discusses some related work and finally Section [7] concludes the
paper and presents future work.

3 Belief-Desire-Intention

ivdXR

39

D4.2 — 2nd prototype of SETAs

WP4-D4.1

2 OCC theory of emotion

Ortony, Clore, and Collins [17] presented a cognitive structure of emotions which
characterizes 22 emotion types (e.g. joy, hope, disappointment, distress and fear).
According to their "OCC’ theory, emotions are valenced reactions which can be
turned on by outcome of events, outcome of agents’ actions, or attributes of objects.
Event-based emotions that are applicable to most game setups are highlighted in blue
in Figure [T} We selected them to be the basis of our proposed event-based transition
system for emotions in our PX testing framework (further explanation in Section [3I).
Each of the emotion types listed in Figure[T]is specified as described in [17].

VALENCED REACTION

[_positive]
negative
TO
1 v
+ CONSEQUENCE * ACTION ASPECT
i (OFEVENT) : (OF AGENT) (OF OBJECT)
(_pleased] approving Tk
(disapproving | disliking
SELF OTHER
CONSEQUENCE CONSEQUENCE AgEnT ool
FOR OTHER FOR SELF
(_pride) [(admiration] (love]
h: reproach hate
DESIRABLE UNDESIRABLE PROSPECTS PROSPECTS (shame] (_rep:) ()
FOROTHER FOR OTHER RELEVANT ARRELEVANT ATTRIBUTION ATTRACTION
‘happy-for gloating _joy |
Lresentment | [distress
FORTUNES-OF-OTHERS WELL-BEING

[fears-confirmed (_remorse | [_anger]

[isappointment|
PROSPECT-BASED

WELL-BEING/AARIBUTION
CCOMPOUND

Fig. 1: OCC structure of emotions [17].

Table[T] summarizes OCC specifications of the highlighted emotion types; e.g. the
OCC theory defines joy as is being pleased about a desirable consequence of event.
For example, consider a maze game in which an agent is looking for gold. When the
agent finds a room with a gold pile, and it takes one step toward the gold, this has a
desirable consequence (the agent is certain that it gets closer to the gold), so the agent
feels pleased and as a result it starts to feel joy for the gold. However, satisfaction is
different. It is defined as being pleased about the confirmation of the prospect of a
desirable consequence. This emotion needs achievement confirmation whereas joy can
be triggered whenever the agent becomes certain that the goal is achievable, although
not fulfilled yet. In the above example, satisfaction is triggered when the agent actually

ivdXR

V4XR

40

D4.2 — 2nd prototype of SETAs \v4 X R

acquires the gold. Additionally, while joy affects satisfaction, the agent might not be
satisfied towards every goal which it is joyful about. In the earlier set-up, the agent,
when proceeding to collect the gold, faces guardians that need to be defeated first, and
ends up consuming a unique item to win the combat. Thus, despite reaching the goal that
it is joyful about, it would not be satisfied for failing to keep all its prized possessions.

Table 1: Selected Emotions specifications according to the OCC theory [17].
Joy: pleased about a desirable consequence of event
Distress: displeased about an undesirable consequence of event
Hope: pleased about the prospect of a desirable consequence of event
Fear: displeased about the prospect of an undesirable consequence of event
Satisfaction: pleased about the confirmation of the prospect of a desirable consequence
Disappointment: displeased about the disconfirmation of the prospect of a desirable consequence

In general, dealing with emotions involves appraisal and coping [I7]. When an
agent receives an event, the appraisal process is triggered to form emotions. Afterward,
the agent responds to those emotions based on coping strategies which affects the agent
behavior towards the environment. In other words, emotions regulate the agent’s actions
during the coping process. In this paper, we focus on modeling of appraisal —the
proposed appraisal model of event-based emotions will be presented in Section 4]

3 Agent-based Player Experience Testing Framework

In this section, we will explain the proposed framework architecture with their
components and demonstrate appraisal in PX testing with some examples.

3.1 The framework architecture

The general architecture of the proposed framework is presented in Figure[2] showing
appraisal model of emotions, player characterization, Aplib and PX evaluation as the key
components. They are defined below.

Appraisal model of emotions. Emotions of a test agent are modeled based on
the OCC theory. Since the framework does emotional evaluations on perceived events
produced by the agent’s actions or uncontrollable dynamic events such as hazards,
only event-based emotions relevant to computer games are needed. To model these
emotions, a transition system approach is proposed, which is formalized in Section]
This calculates the event-based emotion types with their respective intensity. We will
focus on a single test agent setup, thus for now we leave out emotions that are only valid
in multi-agent settings. There is also room for extending the model, in the future, to test
aspects of players” experience that are formed in various social contexts.

Player characterization. Some properties of the appraisal model of emotions need
to be specified by game designers with respect to the game under test as well as the
player characteristics. For example, the designers should specify what goals are relevant
for players (e.g. winning the game, collecting in-game money), what in-game events are
relevant to these goals, and in what way they are related to the goals (are they desired

WP4-D4.1 ivdXR 41

D4.2 — 2nd prototype of SETAs

WP4-D4.1

Formal model of
Appraisal -—
Emotions. Perception |

Appraisal model B
o Emotion Events Aplib [acton

WBWUOIIAUI

A) I
f scenario Emotions

a9pun awey sINndwod

Player | Lg
Characterization FXEvaluation) &
*
« Player goals test scenario S1
« initial likelihood of each goal =
vt P u test scenario 52 D
«+ likelihood function
«+ desirability function

Fig. 2: Automated PX testing framework architecture.

towards reaching a goal, or else undesirable?). Additionally, the desirability of an event
might differ from one player character to another. Thus, player or set-up dependent
properties must be initially set in this part of framework, before running the model of
appraisal. Having such a component in our framework also provides an opportunity to
enhance it in the future with more advanced characteristics such as players’ moods and
play-style (e.g., exploratory or aggressive [23129]).

Aplilﬂ [20]. A Java library for programming intelligent agents. It provides
an embedded Domain Specific Language (DSL) to use all benefits of the Java
programming language. Aplib has a BDI architecture [12] with a novel layer for tactical
programming to control agents behavior more abstractly. Despite other use cases, the
library has been developed for testing tasks in highly interactive software like games.

PX Evaluation. Designers give test scenarios to the framework to check whether
their newly developed content indeed triggers the expected emotions. This part is
responsible for the visualization of the emotional state of the test agent as it pursues
dedicated goals in a game environment with a given test scenario. Generated emotion
types with their upward/downward trends during the test would assist designers to alter
game parameters to optimize the experience in a certain degree.

3.2 Appraisal theory in PX testing

As mentioned earlier, the appraisal process is an essential part of computational models
of emotions. So, to automatically test the player experience based on emotions, we need
to include this process in our framework for creating emotions. This would allow us to
check whether the designers’ expected emotions are as same as the triggered players’
emotions when exposed to certain situations in the game.

For instance, educational games are often evaluated based on the engagement level
of learners to promote learning. Traditionally, to do this, players’ emotions are tracked
using either self-reports or automated facial emotion detection during a game-based
task [[16]], Identifying positive and negative emotions plays an essential role in deciding

4 https:/iv4xr-project. github.io/aplib/

ivdXR

V4XR

42

D4.2 — 2nd prototype of SETAs

WP4-D4.1

if some game-based conditions and tasks need to be changed to optimize learning. Our
proposed framework would help in performing this process automatically using model
of emotions to create emotions with respect to events.

Users of a more traditional, non-game, system typically need to feel higher levels of
positive emotions and low levels of negative emotions to reach a satisfactory experience,
while moderate levels of positive emotions and a high level of negative emotions such
as distress, fear and disappointment could end up in an unsatisfactory experience with
the system [18]. These negative emotions reflect users’ feelings when they are unable
or unsure of how to use the system in some situations. This lead to the poor usability of
the system [23]. However, computer games, e.g. those in the RPG and combat genres,
can be deliberately designed to invoke certain negative emotions for certain experience
in players because it can ultimately contribute to their enjoyment [3] or even lead to
high level of positive emotion when the player overcomes reasons that evoked negative
emotions like fear and frustration [14]]. Thus, unlike UX testing, in PX testing designers
also need be able to analyze relations between positive and negative emotions. Our
proposed framework can automatically check whether these emotions are appraised
during playing the game. The prototype further refines this by also tracking when and
where these emotions occur, thus enabling refined analyses. If the patterns of these
emotions do not meet expectation, designers can change properties of the game and
iterate the emotional testing process to achieve the expected emotions.

Ultimately, modelling a player’s coping process improve the ability of the
framework in PX testing. This is discussed briefly in Section [7] However, being able
to model the coping behavior does not change the fact that the framework needs to
also support the appraisal process of emotions in the first place. For this reason, our
proposed framework first focuses on the appraisal process.

4 Event-based Formal Model of Emotion

Imagine that a software testing agent which takes the role of the player is deployed on
a computer game to do PX testing. The agent is modelled as an event-based transition
system which can appraise emotions to emulate the emotional state of a player. Its state
consists of its “belief” (perception) over the game and its emotions which can eventually
affect its behavior to resemble the player behavior. In this section, we describe the
essential part of the formalization of this event-based emotion transition system to
conduct an approach for formal modeling of automated PX testing.

In the following, we assume an agent to have beliefs and goals, based on which it
decides which actions should be taken in the environment. Being able to differentiate
between different goals is useful for PX testing, as games often offer various optional
plots and goals to players to improve their non-linearity and replay value. A goal g is
represented as a pair (id,x), with id as its unique identifier and x as its significance or
priority of the goal. Goals and their significance are static in this setup. We also assume
that an agent senses its environment by means of events. For simplicity, it is assumed
that the agent observes one event at a time, causing the agent to transition from one
state to another. Whereas the agent’s own actions are events, there are also events that
arise from environmental dynamism such as hazards and updates by dynamic objects.

ivdXR

V4XR

43

D4.2 — 2nd prototype of SETAs

WP4-D4.1

We also add the event tick to discretely represent the passing of time. We represent
emotion types as Erype = { Joy, Distress,Hope, Fear,...}. In the sequel, erype ranges
over this set.

Definition 1 An emotional testing agent is represented by a transition system M,
described by a tuple:
(£,50,G,E,8,I1, Thres)

where:

— Gis aset of the agent’s goals.

— X is the set of M’s possible states. Each state s in £ is a pair (K, Emo) where:

e K is a set of propositions representing the agent’s beliefs. We additionally
require that for every g € G, K includes a proposition representing the
goal’s confirmation or dis-confirmation status, and a proposition representing
the likelihood of reaching this goal from the current state. The former is
represented by status(g, p) where p € {achieved, failed, proceeding} and the
latter by likelihood(g,v) where v € [0..1].

e Emo is a set containing the agent’s active emotions, each is represented by a
tuple (erype,w,g,t) specifying the emotion type erype, its intensity w with
respect to a goal g, and the time 7y at when the emotion is triggered.

— so € Lis the initial state. It should specify the agent’s initial belief on the likelihood
of every goal, as well as initial prospect-based emotions (hope and fear). The
rationale for the latter is that having an initial prospect towards a goal implies that
there is also hope for achieving it, as well as some fear of its failure.

— E is the set of events the agent experiences.

— 8:IxE — Xis the state transition function that describes how M moves from one
state to another upon perceiving an event. The definition is rather elaborate, and
will be given separately in Definition[2]

- I1 = (Des, Praisew, DesOther, Liking) is a tuple of appraisal dimensions according
to the OCC theory. This determines how an event is appraised in terms of its
desirability, praiseworthiness, desirability by others and liking.

— Thres is a set of thresholds, one for every type of emotion.

As an example, Figure [3] illustrates first few transitions. We, additionally, assume
the agent maintains an emotional memory, called emhistory, which keeps the history of
active emotions (Emo) for a reasonable time window in the past:

time window d
emhistory = Emo,_4, ... , Emo;_,

where 7 is the current system time and d is the size of the memory’s time window.
Emo;—; indicates the active emotional at time 7 — i in the past.

Before presenting the rest of the formal model, we feel the necessity to bring
more clarity into the concept of goals’ likelihood and status. The transition system
is defined in a way that there is a slight difference between likelihood(g,1) and
status(g,achieved). When an agent experiences likelihood(g, 1), it is possible that the

ivdXR

V4XR

44

D4.2 — 2nd prototype of SETAs

WP4-D4.1

Memoryl: emhistory={Emo.qEmoy.}

€ e
(K Emop | ..,

ser

Fig. 3: An agent’s state transitions, as it receives an event ¢; followed by e>.

goal g does not get confirmed in the same state. In other words, the agent comes to
believe that the goal is reachable with 100% certainty, but the achievement of the
goal has not been confirmed yet in the current state. A similar relation holds for
likelihood(g,0) and status(g, failed).

The next key point is the agent’s appraisal component IT, which has four
dimensions. They help in modeling how events are appraised with respect
to every goal in the corresponding dimension. Each appraisal dimension
is described as a function over the agent’s beliefs, an event and a goal:
Mpim (K.e,g).where Dime{Des, Praisew, DesOther,Liking}. ~ For example,
Ipes(K,e,g) determines the desirability of an event e with respect to the goal
g, judged when the agent believes K; the latter implies that this desirability might
change when K changes. Depending on the emotion, one or multiple appraisal
dimensions might be triggered. Currently, IT g is the only dimension being actively
used in our model because according to the OCC theory, the only appraisal dimension
which affects our selected emotion types is the desirability function. However, we keep
the structure in the general form for possible future extension of the emotion types.

Below we will explain how emotions will be calculated, but importantly we
should note that PX designers must provide some information as well, namely the
following components of the tuple in Definition [T} (1) the goal set G, along with the
significance and initial likelihood of each goal (likelihood (g, vinir)), (2) likelihood
functions modelling how events affect the agent’s belief towards goals’ likelihood,
(3) the appraisal dimensions, in particular I1 pes(K, e,g), (4) the thresholds Thres and
(5) decay rate decayerype. In the simplest form, ITpeg(K,e,g) can be described by a
mapping that maps events to the goals they are perceived as desirable/undesirable. In
a more refined description this can be a function that monotonically increases with
respect to the goal significance and likelihood. In terms of the architecture in Figure 2}
the above components are described in the Player Characterization part.

Definition 2 Event-based Transition. As mentioned earlier, the agent’s state transition
is driven by one incoming event at a time. The transition function (& in Def.[T) is defined
as follows. Let e be an occurring event:

updated emotion Emo’

(K, Emo) —— (K, newEmo(K,e,G) @ decayedEmo(Emo))

where:

ivdXR

V4XR

45

D4.2 — 2nd prototype of SETAs

WP4-D4.1

- K' = e(K) \ H, where e(K) is the agent’s new beliefs obtained by updating K
with event e; here, the event ¢ is assumed to have a semantic interpretation
as a function that affects K, including the parts that concern goals’ likelihood
and status. H expresses likelihood information that can be removed from ¢(K),
because the corresponding goals are achieved or failed. More precisely, H is the set
{ likelihood(g,v) | status(g, p) € e(K), p € {achieved, failed}, v € {0,1} }.

— Emo' =newEmo(K ,e,G) @ decayed Emo(Emo) is the agent’s emotions updated by
the perceived event e and the agent’s new beliefs. Importantly, the newEmo(K e, G)
specifies the newly triggered emotions (see Def[3), whereas decayed Emo(Emo)
(see Deff.T) is a set of active emotions that decay over time. The operator < merges
all these emotions after applying some constraints to have the updated emotional
state of the agent. The emotional update is explained in Section &3}

When an agent perceives an event (except rick event), new emotions may be
triggered. This is done by calculating a so-called emotion function’ E for every
emotion type, as follows:

Eryp(’(’(vevg) =W

This function specifies the activation intensity w of the emotion erype towards the goal
g, as a consequence of the occurrence of e and having beliefs K. Importantly, note
that the function expresses goal oriented emotions, whereas the OCC theory includes
e.g. emotions towards events or objects. We focus on goal oriented emotions due to
the importance of goals, ranging from defeating monsters to getting the highest score,
for game players. A tick event is used to represent the passing of time. This event
would cause decays of active emotions in the transition system. The definition of newly
triggered emotion, mentioned in DefZ] is given below. It is used whenever a new
emotion is triggered or an existing emotion reoccurs in the system. The way these new
emotions are merged with existing emotions in Emo, as mentioned in Def[2} will be
explained in Section .3} We also need to remind that some hope and fear already exist
in the system at the beginning which can be re-triggered by this function. Their initial
values are set according to goals’ significance and initial likelihoods of goals.

Definition 3 New Emotions. The set of new emotions triggered by e is:
newEmo(K,e,G) = {(etype,g,w.t) | etype € Etype, g € G, w = Eyype(K,e,8) >0}
where 7 is the current system time that the emotion is triggered.

In the above definiton E,y,, is a so-called activation emotion function that calculates
the activation intensity for different newly triggered event-based emotion types. Each
activation emotion function has an activation potential and a threshold which form the
activation intensity of the newly triggered emotion (see Def[). The level of desirability
an event respecting a goal and the agent’s goal likelihood are the main variables
affecting the activation potential as hinted in the OCC theory. To trigger a new emotion
type, its activation potential value needs to pass the corresponding threshold. The
concept of threshold is needed if we want to support setups with different agent’s
moods because the thresholds depend on the moods (e.g. Steunebrink et al.[26] pointed

ivdXR

V4XR

46

D4.2 — 2nd prototype of SETAs \v4 x R

out that with a good mood, the thresholds of negative emotions increase, hence bringing
about a lower degree of intensity in negative emotions when they are triggered). All
activation functions of emotions defined below have the same structure. However, the
potential part might differ. They are as follow.ﬂ

Definition 4 Joy

activation intentsity
Ejoy(K.e.8) = Hpes(K.e,g) — Thres(Joy)
N
activation potential
provided g € G, likelihood(g,1) € e(K)} and T pes (K, e,8) > 0.
Definition 5 Distress

Epistress(K.€:8) = M pes(K,e,g)| — Thres(Distress)
provided g € G, likelihood(g,0) € e(K), and IT pes (K, e.g) < 0. Unlike Joy, Distress
is triggered when an event is deemed as undesirable towards the goal.
Definition 6 Hope
EHope(K,€,8) = V' #x—Thres(Hope)
provided g = (id,x) € G, likelihood(g,v) € K, likelihood(g,V') € e(K), and v<v/<1.
It is assumed that the increase in likelihood of a goal is only possible if the incoming

event is desirable towards the goal. Thus, with this assumptions, there is no need to
check the desirability of the event ITpeq(K. €, g) for prospect-based emotions.

Definition 7 Fear
Erear(K,e,8) = (L—V)xx—Thres(Fear)
provided g = (id,x) € G, likelihood(g.v) € K, likelihood(g,V') € e(K), and 0<v'<v.

Definition 8 Satisfaction

E Gatistaction (K. €.8) = x— Thres(Satis faction)

provided g=(id,x) € G, status(g,achieved) € e(K), (Hope,g) € emhistory, and
(Joy,g) € emhistory.

Definition 9 Disappointment
E pisappointment(K.¢,8) = x—Thres(Disappointment)

provided g=(id,x) € G, status(g.failed) € e(K), (Hope,g) € embhistory, and

(Distress,g) € emhistory.

3 For convenience, we only define the functions partially. The cases where they are undefined
will be ignored by Def.ﬁanyway, where they are used.

6 Unlike prospect-based emotions, well-being emotions are certain. So, joy and distress towards
a goal only happen if the goal’s likelihood becomes 1 and O respectively. In particular,
obtaining certainty of achieving/failing the goal is seen as notable desirable/undesirable
consequence of an event to justify these emotions. There might other practical consequences,
but we will mostly focus on the aforementioned types of consequences.

10

WP4-D4.1 ivdXR a7

D4.2 — 2nd prototype of SETAs

WP4-D4.1

4.1 Decay of emotions

Every emotion has a duration called emotion episode in which the peak of its intensity,

its decay rate, possible recurrences, and the time that the emotion is triggered are

shown[26]]. As indicated earlier in Def[l] ick is a time event to show the passing of

time in our transition system. We can reflect decays of emotions using this event:
{K,Emn)ﬂ(l(’.h‘mo’)

where K’ and Emo’ refer to the updated beliefs and updated active emotions after the

transition. The intensity of active emotions in Emo would decrease as follows:

decayedEmo(Emo) =
{ {etype.g. W .10) | (etype,g.w.to) € Emo, w' = intensitydecay etype(wo./0) >0,
wo = embhistory(etype,g.1o) }

where wo = emhistory(etype, g,to) denotes the initial intensity of etype with respect
to g which can be obtained from emhistory. There is not a unique quantitative
formalization for the decay function intensitydecay. This function can be defined in
a way which relates the usage and the interpretation of decay [27] [6]. However the
peak of intensity (wp), the time at which the emotion is triggered (7o) and the decay rate
(decayerype) are essential parameters that must be taken into account. While an inverse
sigmoid decay function is proposed by [27] to reflect the gradual decrease of intensities,
is making use of a negative exponential function with almost the ame parameters.
We used the latter decay function [6] in our model although the sigmoid decay function
[27] can be used as well.

intensitydecay egype(Wo,20) = wo * € decayeype * (=) _] < ¢ <0

where 7 is the current system time and fo is the time at which the emotion starts.

4.2 Inconsistent emotions

Emotions are triggered regarding the goals, so technically the agent might have
several emotions towards the same goal. Nevertheless, the OCC theory states that
some emotions are mutually exclusive which means a human can not have them
simultaneously for the same goal [26]. These mutual exclusions, which should then
also be held in every state of our transition system, are as follows:

Emo E —((Hope,g) A (Joy,8))
Emd & —((Fear,g) \ (Distress,g))

As it is explained in Section whereas emotions such as hope and fear are
prospect-based emotions which means they are uncertain (/ikelihood(g,v)), emotions
like joy and distress are certain [26], so it is illogical to have both in the system. For
example, when a player is joyful of acquiring the key to an in-game treasure room,
because now the treasure should certainly be within his/her reach, this joy would
now replace what was merely hope for getting the treasure. In general, in case of
happening a certain emotion, it replaces the corresponding prospect-based emotion,

11

ivdXR

V4XR

48

D4.2 — 2nd prototype of SETAs

WP4-D4.1

so the mutual exclusions are always maintained. We formulated our formal model in
a way that in case of the conflicting emotions, the new certain emotion would take
the place of the prospect-based emotion. However, the set of inconsistent emotions
can be expanded based on the test purpose or the game under test. The designer can
specify these as assumptions in the Player Characterization component. A notation as
axiomset ((etype, g)) is used to access every rule containing (erype, g).

4.3 Emotional state update

To update the emotional state, newly triggered emotions, newEmo, need to be merged
with existing active emotions whose intensities are decreasing gradually, decayed Emo,
to yield the new emotional state Emo’. There are three cases to consider. Case-1
involves existing emotion types that decay without having the same emotion type or
the conflicting type in the newEmo; these will be kept. Case-2 involves newly triggered
emotion types that do not exist in decayedEmo; these are added to Emo’. Case-3
involves emotion types in decayed Emo that reoccurs in newEmo. Only emotions from
these three cases will be included in Emo’. In particular, this implies that in the cases of
inconsistent emotions, the newly triggered emotion takes precedence over the emotion
which has already existed by taking its place in order to uphold the mutual exclusions
discussed before. The new one is added to Emo’ based on Case-2. This comes from
the rationale that new belief and perceptions convey more accurate information than
past information, and therefore the triggered new emotions have more weight for the
player. The last case, Case-3, is about existing emotions that get re-stimulated by the
new perceived event. To date there is no definitive answer to the question of how this
should be reflected to the intensity of the corresponding emotions. We decided to take
the maximum intensity value of the emotion (the dominant value). However, a more
proper answer to the question would need further research. The update is formally
shown below, with the Cases indicated accordingly:

@ {{etype.g,w.t0) | (etype,g.w,to) € decayedEmo
A =3w 1. (etype, g, W .10} € newEmo
A =3 w1 (efype,g,w',15) € newEmo }

U
Emo’ = { @ {(etype,g.w'.1() | (etype.g,w.1() € newEmo
A =3w,1g.(etype,g. w.1y) € decayedEmo }
U
@ {max({etype,g,w,10), (etype,g.w'.15))| (etype,g, w,to) € decayedEmo
A (etype,g, w15} € newEmo}

where 7o is the time at which an emotion is triggered (starts) and the outcome of max
is the one with the higher intensity. An emotion that is in conflict with etype is referred
as efype. The above update scheme will uphold the axiom —({erype, g) A (efype,g)) €
axiomset ({etype,g)).

12

ivdXR

V4XR

49

D4.2 — 2nd prototype of SETAs

WP4-D4.1

5 Proof of Concept

‘We conducted our experiment on a game called Lab Recruity’| which we subject to the
combination of aplib and our implemented model of appraisal®|to provide the proof of
concept and show our early results in PX testing. Lab Recruits is a 3D game developed
in Unity which has different replayable levels. Each level is a laboratory building with
a number of rooms containing interactable objects, such as button and non-interactable
objects, such as desk and fire hazards.

Figure[a]shows the floor plan of the level exposed to PX testing using our approach.
It consists of four buttons, three doors, and some fire hazards. The goal is for the player
to escape the level by reaching the exit room circled in red. Access to this room is
guarded by a closed ’final door’. The level contains some rooms with a puzzle (yellow
circle) that involves finding the buttons to open the final door and reopen the doors that
in the process become closed to entrap the agent. Figure [#b]and [Ac] show two provided
setups with the different amount and locations of fire hazards. The agent will lose health
points by passing each fire hazard. These setups are examples of choices considered by
designers, although being currently simple, as to which one would lead to better PX.

(b) Setup 1. (c) Setup 2.

(a) The floor plan of the level.

Fig. 4: The level under the PX test in Lab Recruits.

As mentioned in Section [] a developer sets needed inputs of the model such as
the goal set, initial likelihood of each goal, the desirability of events for each goal,
the threshold and decay rate of emotions in Player Characterization. A test agent is
deployed, set with multiple goals, though here we will only discuss the most significant
one, namely completing the level. Initially, the agent is assumed to believe that the
likelihood of achieving this goal is 0.5. The agent is given a program so that it can
automatically explore the level. As the agent progresses, its belief on the likelihood
of completing the level changes, depending on the number of opened door as well as
remained closed doors. Opening each door is assumed to have a desirable consequence
for the agent because it increases the chance of the agent to complete the level.

The timeline of triggered emotions in the agent with respect to the goal “completing
the level” is shown in Figure[3] along with their intensity levels at each time. The agent

Thttps://github.com/iv4xr-project /ivdxrDemo/tree/occDemoPrototype

8|https://github.com/ivéxr-project/jocc

13

ivdXR

V4XR

50

D4.2 — 2nd prototype of SETAs

WP4-D4.1

initially experience some hope and fear due to the assumed initial belief that completing
the game is possible, with the likelihood 0.5. In both setups, when the agent pushes the
button that opens the first door (time:?(ﬂ), the agent’s hope regarding completing the
game starts to increase. It decays or gets re-stimulated according to the events until time
120 when it is replaced by joy. The agent feels a level of satisfaction, When completing
the game. Comparing two setups reveals something interesting. Fear shows a quite
different trend in setup 2 (Figure [5b). It is strongly stimulated multiple times during
the execution, whereas the same emotion is rarely stimulated in setup 1, and when it
happens, it happens with much less intensity (Figure [5a)), towards the end of the play,
where it matters less. Such comparison can be useful for designers e.g. to determine the
amount, and placement, of hazards to induce certain degree of fear along with keeping
the chance for satisfactory experience of accomplishing the goal. In our case, setup [is
less likely to thrill the player, whereas setup 2 has a better balance of the quantity and
placement of the fire, by generating fear, while still keeping the level survivable.

Emotion over time in a simulated gameplay Emotion over time in a simulated gameplay

101 — hope [L0 — hope i
—— fear Py | — fear T
08+ — joy | 4 081 — joy
—— satisfaction [\ — satisfaction /| !
206 1 206 =k _
i e i ==
§ | 5 ~—LJ
Zo4 £04
0.2+ 0.2 —
0.0+ 0.0
0 20 40 60 8 100 120 140 0 20 40 0 80 100 120 140
time time
(a) Setup 1 (b) Setup 2

Fig. 5: The emotions’ timelines correspond two setups of the game level in Figurc,@
(threshold=0, decay rate=0.005)

Figure (6] shows some heat maps, providing spatial information of the agent’s
emotions in Setup 2. Comparing the outcomes of Figures @ and [@ illustrates that
the highest level of fear is experienced between time 65 to 75 when the agent is in a
particular fire covered corridor (yellow in Figure[6a). Fire intensifies the agent’s fear of
failure, and moreover the agent has to walk this corridor several times. The most drastic
decline in fear is when the agent is about to finish the level.

As can be seen in Figure[6b] the agent feels a higher level of hope when progressing
in solving the buttons-doors puzzle in the puzzle rooms. After pushing the button that
corresponds to the final door and reopening the door of puzzle room to escape it, the
agent becomes certain that passing the final door is achievable now. Thus, the hope

% The system is event driven, so only events can change the likelihoods. All emotions decay
until an event is perceived. However, we can add an event type to the system to decay the
likelihoods when there is no event for some period of time to update the emotional state.

14

ivAXR

V4XR

51

D4.2 — 2nd prototype of SETAs

WP4-D4.1

(a) Negative emotions: yellow= high fear, (b) Positive emotions: Mahogany red=hope,
Orange shades=low fear. Ruby red= joy, yellow= satisfaction.

Fig. 6: The heat maps of triggered emotions in setup 2.
Black=no emotion, white= walls (not walkable), gray=unexplored area.

suddenly is replaced by the joy for reaching the final door to complete the game. At
the end, the agent feels satisfied when the achievement is confirmed. Having such
information would help Lab Recruits designers to adjust the puzzles and fire hazards in
such a way to induce certain emotions, at the right moments and the right places, which
ultimately affect a certain aspect of player experience like enjoyment.

6 Related Work

PX researchers aim to understand the gaming experience to ultimately induce certain
experience. Fernandez [9] outlines the influence of players’ emotional reactions and
their profile in enjoyment by extending the usability methods to uncover relationships
between game components and the degree of fun in players. Sanchez et.al [24]
explained that usability of games can be defined in the term of playablity. They present a
framework guided by attributes and properties of playability to characterise experience
for PX evaluation and observing the relation between the experience and the developed
elements of a commercial video game. Psycho-physiological methods is among
techniques to measure aspects of PX like flow and immersion. Jennett’s et al. [I3]]
tries to develop a subjective and objective measure for immersion using questionnaires
and eye movement tracking respectively. Drachen et al. [7] report a significant the
correlation between heart rate, electrodermal activity and the self-reported experience
of players in first-person shooter games. Zook and Riedl [30)] introduce a temporal
data-driven model to to predict the impact of game difficulty to player experience.
Results of their empirical study on a role-player combat game show the game, that
tailors its difficulty to fit a player abilities, improves the player experience. Most of PX
prediction techniques are data-driven which involve human players in the process and
as a result, they demand a high level of human labor. This led researchers to investigate
model-driven approaches. A computational model of motivation is presented in [I1] to
predict PX without the need of human player using empowerment, the degree of control
an agent has over the game. The study measures empowerment by intelligent agents to

15

ivdXR

V4XR

52

D4.2 — 2nd prototype of SETAs

WP4-D4.1

create levels with defined empowerment to induce different PX. This would help to
produce desired content characteristics during the procedural content generation.

Despite existing research on modeling the OCC theory, the theory has not been
employed in the context of PX testing. Having a proper formalization of emotion would
act as a bridge from psychological description of emotions to computational models of
emotions which are translatable to codes. Formalization of emotions has been mostly
done in the form of BDI logic. Steunebrink [26] deployed a formal model inspired
by the OCC theory to specify the influence of emotions, specifically hope and fear,
on a BDI agent’s decisions. Later, a full version of the model with all 22 emotions is
explained in [27]. Dias et al.[6] presents an OCC-based appraisal engine called FAtMA
(Fearnot AffecTIve Mind Architecture) for creating autonomous agent characters that
can appraise events and behave based on socio-emotional skills. Its main use case
is to automate virtual characters in conversing with humans. FAtiMA is claimed to
be inspired by the OCC theory to simulate emotional skills in autonomous agents.
However, so far, no formal model has been introduced to evaluate the toolkit regarding
the OCC theory. A BDI-like probabilistic formalization is described in [10] for OCC
event-based emotions during the appraisal. The study evaluates the desirability of
consequences of an event based on the agent’s goal and the degree that the consequence
can improve the possibility of the goal achievement. Unlike other formalisations that
give a high level function for appraisal variables, it proposes a more refined logic-base
calculation for these variables and also tries to formalize "effort’ and 'realization’ that
are involved in appraising some event-base emotions.

7 Conclusion & Future Work

This paper presented an automated PX testing approach using an emotional model.
An event-based transition system is introduced to model the appraisal for event-based
emotions according to the OCC theory which is then combined to a Java library for
tactical agent programming called aplib to create an agent-based PX testing framework.
Early results of our experiment with the prototype show that such a framework that can
emulate players’ emotions would let developers to investigate how emotions of players
would evolve in the game during the development stage. By providing e.g. heat-map
visualisations of triggered emotions and their timelines, designers gain insight on how
to alter parameters of their systems to evoke certain emotions.

We are currently doing more advanced experiments using the case study, Lab
Recruits, to investigate initial moods, emotions and their effect on certain aspects of
PX as a future work. There are also some concepts like emotional intensity after a
recurrence that are described with high level functions in the literature which need a
calculation mechanism. In particular, we want to do further research on how exactly
an emotion should regain its intensity level after a re-stimulation. Furthermore, the
proposed framework, if enhanced by the coping process, would be able to simulate the
effect of emotions on players’ behavior for further PX evaluations. However, this needs
extension in our event-based transition system to support the coping process formally
respecting the OCC theory. We ultimately plan to conduct research on validation of our
model by comparing our results with the data of human players.

16

ivAXR

V4XR

53

D4.2 — 2nd prototype of SETAs

WP4-D4.1

References

1

2

AW

10.

20.

Adam, C., Herzig, A., Longin, D.: A logical formalization of the occ theory of emotions.
Synthese 168(2), 201-248 (2009)
Alves, R., Valente, P, Nunes, N.J.: The state of user experience evaluation practice. In:
Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast,
Foundational. pp. 93-102 (2014)

. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
. Bernhaupt, R.: Game user experience evaluation. Springer (2015)
. Bopp, J.A., Mekler, E.D., Opwis, K.: Negative emotion, positive experience? emotionally

moving moments in digital games. In: Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. pp. 2996-3006 (2016)

. Dias, J., Mascarenhas, S., Paiva, A.: Fatima modular: Towards an agent architecture with a

generic appraisal framework. In: Emotion modeling, pp. 44-56. Springer (2014)

. Drachen, A., Nacke, L.E., Yannakakis, G., Pedersen, A.L.: Correlation between heart rate,

electrodermal activity and player experience in first-person shooter games. In: Proceedings
of the 5th ACM SIGGRAPH Symposium on Video Games. pp. 49-54 (2010)

. Fang, X., Chan, S., Brzezinski, J., Nair, C.: Development of an instrument to measure

enjoyment of computer game play. INTL. Journal of human—computer interaction 26(9),
868-886 (2010)

. Fernandez, A.: Fun experience with digital games: a model proposition. Extending

experiences: Structure, analysis and design of computer game player experience pp. 181-190
(2008)

Gluz, J., Jaques, P.A.: A probabilistic formalization of the appraisal for the occ event-based
emotions. Journal of Artificial Intelligence Research 58, 627-664 (2017)

. Guckelsberger, C., Salge, C., Gow, J., Cairns, P.: Predicting player experience without the

player. an exploratory study. In: Proceedings of the Annual Symposium on Computer-Human
Interaction in Play. pp. 305-315 (2017)

. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures: old problems,

new perspectives. KI-Kiinstliche Intelligenz 31(1) (2017)

. Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.: Measuring and

defining the experience of immersion in games. International journal of human-computer
studies 66(9), 641-661 (2008)

. Lazzaro, N.. Why we play: affect and the fun of games. Human-computer interaction:

Designing for diverse users and domains 155, 679-700 (2009)

. Meyer, 1.J., Broersen, I., Herzig, A.: Handbook of Logics of Knowledge and Belief, chap.

BDI logics. College Publications (2015)

. Ninaus, M., Greipl, S., Kiili, K., Lindstedt, A., Huber, S., Klein, E., Karnath, H.O., Moeller,

K.: Increased emotional engagement in game-based learning—a machine learning approach
on facial emotion detection data. Computers & Education 142, 103641 (2019)

. Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. cam (bridge

university press. Cambridge, England (1988)

. Partala, T., Kallinen, A.: Understanding the most satisfying and unsatisfying user

experiences: Emotions, psychological needs, and context. Interacting with computers 24(1),
25-34(2012)

. Peterson, J., Pearce, P.F.,, Ferguson, L.A., Langford, C.A.: Understanding scoping reviews:

Definition, purpose, and process. Journal of the American Association of Nurse Practitioners
29(1), 12-16 (2017)

Prasetya, 1., Dastani, M., Prada, R., Vos, T.E., Dignum, F., Kifetew, F.: Aplib: Tactical
agents for testing computer games. In: International Workshop on Engineering Multi-Agent
Systems. pp. 21-41. Springer (2020)

17

ivdXR

V4XR

54

D4.2 — 2nd prototype of SETAs

WP4-D4.1

21.

22.

28

24.

25¢

26.

27.

28.

29.

Procci, K., Singer, A.R., Levy, K.R., Bowers, C.: Measuring the flow experience of gamers:
An evaluation of the dfs-2. Computers in Human Behavior 28(6), 2306-2312 (2012)
Rivero, L., Conte, T.: A systematic mapping study on research contributions on ux evaluation
technologies. In: Proceedings of the XVI Brazilian Symposium on Human Factors in
Computing Systems. pp. 1-10 (2017)

Saariluoma, P., Jokinen, J.P.: Emotional dimensions of user experience: A user psychological
analysis. International Journal of Human-Computer Interaction 30(4), 303-320 (2014)
Sanchez, J.L.G., Vela, EL.G., Simarro, EM., Padilla-Zea, N.: Playability: analysing user
experience in video games. Behaviour & Information Technology 31(10), 1033-1054 (2012)
Stahlke, S.N., Mirza-Babaei, P.: Usertesting without the user: Opportunities and challenges
of an ai-driven approach in games user research. Computers in Entertainment (CIE) 16(2),
1-18 (2018)

Steunebrink, B.R., Dastani, M., Meyer, J.J.C., et al.: A logic of emotions for intelligent
agents. In: Proceedings of the National Conference on Artificial Intelligence. vol. 22, p. 142.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2007)
Steunebrink, B.R., Meyer, J.J.C., Dastani, M.: A formal model of emotions: Integrating
qualitative and quantitative aspects. In: Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik (2008)

Vermeeren, A.P., Law, E.L.C., Roto, V., Obrist, M., Hoonhout, J., Viininen-Vainio-Mattila,
K.: User experience evaluation methods: current state and development needs. In:
Proceedings of the 6th Nordic conference on human-computer interaction: Extending
boundaries. pp. 521-530 (2010)

Zhao, Y., Borovikov, 1., de Mesentier Silva, F., Beirami, A., Rupert, J., Somers, C., Harder, J.,
Kolen, J., Pinto, J., Pourabolghasem, R., et al.: Winning is not everything: Enhancing game
development with intelligent agents. IEEE Transactions on Games 12(2), 199-212 (2020)

. Zook, A., Riedl, M.: A temporal data-driven player model for dynamic difficulty adjustment.

In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. vol. 8 (2012)

18

ivdXR

V4XR

55

D4.2 — 2nd prototype of SETAs \v4 X R

ANNEX A3

WP4-D4.1 ivAXR 56

D4.2 — 2nd prototype of SETAs \v4 x R

WP4-D4.1 ivdXR 57

WP4-D4.1

D4.2 — 2nd prototype of SETAs

V4XR

Automatic Evaluation and Ordering of Level
Difficulty in Games

Miguel Reis
Instituto Superior Técnico
Lisboa, Portugal
miguel.o.reis @tecnico.ulisboa.pt

Abstract—In this work we propose a method to automatically
order a set of game levels by their difficulty. We introduce
two different complementary forms to evaluate difficulty that
consider how easy it is to finish a level even committing some
errors, and how hard it is to learn. Difficulty can be seen as
a robustness to typical errors, or how much exploration and
trials we need to learn how to solve the level. Our approach is
based on first automatically create an agent to play a game level
using the different forms of possible. Then, simulate the agents
while considering some execution errors. Then, with the measures
of difficulty, based on the robustness to errors, allows to order
the different levels. Results show that the different measures of
difficulty, and ways to simulate users’ errors, are not equivalent
(even if positively correlated) as they do not provide the same
ordering.

I. INTRODUCTION

Video games and interactive software in general need com-
plex quality assurance mechanisms to ensure they are bug free
and fulfill their functional requirements. In games, and other
interactive software, it is also needed to evaluate the usability
and consider human factors to determine if the game is, or
not, enjoyable to play.

Testing involves substantial human labour, usually done by
the developers themselves and playtesters. The first case can
help but it does not solve all the problems as the developers
are too close to the project. The second case is the traditional
way of testing games, but has high costs and delays the
development of the game, it is a bottleneck for the agile
process that game development usually follows. Automation
of the testing process of interactive software and games is,
therefore, a prominent area of research.

One of the typical design concerns that needs testing, is
the overall progression of difficulty of the game to maintain
flow. This often means to define the best sequence of a set of
levels. The sequence of levels can make or break how much
enjoyment players get out of the game. For example, if a game
starts with a level that is of high difficulty in which players
need to have a good understanding of the mechanics to be
successful, players can easily become frustrated. That is why
most games include a tutorial [1] or start with very basic levels
for a player to get understanding of the mechanics. A good
pacing of the difficulty helps the players’ learning the and
mastering of the game.

Rui Prada
INESC-ID
Instituto Superior Técnico
Lisboa, Portugal
rui.prada@tecnico.ulisboa.pt

Manuel Lopes
INESC-ID
Instituto Superior Técnico
Lisboa, Portugal
manuel.lopes @tecnico.ulisboa.pt

Also, during game testing, it is important to be able to check
if some change in the game parameters, e.g. jump height or
friction, changes the overall progression of the game.

This paper describes our approach to automatically assess
the difficulty of a game level and to order a set of levels by
difficulty of a platform game. The approach fist determines
a solution for the level using a search based algorithm. We
then introduce three different ways to model players’ errors
during game execution. The measures of difficulty consider
both the difficulty in learning, i.e. how much exploration is
needed to find the best solution, and robustness to errors, i.e.
how probable it is to finish the level even when committing an
error. We are then able to generate traces of executions with
errors that allow to measure the difficulty. With these measures
we can order a set of levels.

We showcase our approach in a typical platform game but
it can be generally applied in motor skill based games. Results
show that we can indeed validate levels and order them. The
different difficulty metrics do not provide the same ordering of
levels and are thus complementary in use. They are positively
correlated nevertheless.

II. RELATED WORK

This section explores some work that has been explored in
the main subject that this paper touches on.

A. Difficulty in Games

A very important and often overlooked in game testing and
game design is level difficulty. This is due to the fact that a
level difficulty in most cases cannot be perceived by directly
looking at the level. You need to have a understanding of the
mechanics of the game to be able to measure it and even a
person who has it may not be able to correctly distinguish
which levels are harder/easier than others. It also depends
on what is difficult to each player. This task, often done by
developers, is very time consuming because they usually have
to playtest the level one by one several times before reaching
a conclusion on how to order them.

With the goal in mind of defining difficulty, Maria-Virginia
Aponte er al. [2] [3] presents a paper where they build a simple
Pacman-like game where only one ghost is chasing Pacman
while both characters were controlled using a A* pathfinding

ivAXR

58

WP4-D4.1

D4.2 — 2nd prototype of SETAs

algorithm. The Pacman characters challenge was to eat as
many pellets as it could without being killed by the ghost,
while the ghosts challenge was to chase the player using the
shortest path. The player Al used a Markov Decision Process
using reinforcement learning with a Q-Learning Algorithm and
to evaluate the difficulty, the metric chosen was the players
movement speed. This value was an integer that could range
from 0 to 7 and changed how frequently the Pacman could
move, with 0 being the Pacman could move every 14 frames
while with at 7 it would every 7 frames. The ghost would
move always each 14 frames. The results were obtained after
having played 45000 games for the Al to develop his policy in
which then the mean score, based on how many pellets where
eaten, of 5000 games was calculated. It could be seen that
as the players speed went up, the score also started growing,
although when getting closer to the player Al having almost
double the movement speed of the baseline value, the score
grew massively. The authors concluded then that is possible to
evaluate a difficulty curve for a given game but that the exper-
iment done could not be applied to every game and thus tried
to find a more general definition that could be applied. They
demonstrated a way of representing a challenge as a automaton
where you have a starting state "Not Started” which represents
as a challenge not being started which leads to a state “'In
Progress” in which the challenge is being performed which
then can lead to either the "Win” or “Lose” state that represent
the player passing or failing the challenge, respectively. With
this they proposed a definition of a difficulty which was that
the difficulty of a challenge given a time ¢ is a conditional
probability of losing the challenge before ¢ considering all the
challenges that have been solved before. The authors then talk
about how a players’ abilities in games (e.g. aiming in shooter
games) and how the better/more abilities the player has, the
easier the challenges are to complete. They define that the
relation between completing a challenge and a players ability
is a conditional probability and so to test this, they proposed
to measure a certain players ability on a given challenge. After
doing many of these measures they were able to calculate the
probability of a player winning the challenge, knowing his
level for a particular ability. The authors explain that this can
reveal important aspects of gameplay such as which abilities
are more important for certain levels. Concluding, the authors
affirm that game designers lack of methodology and tools to
properly measure difficulty in games.

With a similar thought in mind, F. J. Gallego-Durén et al.
tries to propose a new definition for measuring difficulty in [4].
The authors talk about how essential it is for a person to be in
the “Flow Channel” when performing a activity, this concept
being that the more skills we have, the more challenging the
activity should be on the risk we become bored of it, or in
the other spectrum we become too anxious. But to do so it
is necessary to evaluate the difficulty of the activity and the
persons’ abilities. And so, the authors try to focus on the latter
and aim to propose a new definition for difficulty, a way to
measure it and then test the proposal in a practical case. The
authors define “difficulty as a cost: in order to successfully

V4XR

finish an activity, any learner has to pay a cost in time and
effort”. With that effort is considered to be indirectly related to
progress per time unit and therefore an activity is considered
more difficult the less progress is done per time unit. In that
work, difficulty is set to have the following properties, it is
a continuous non-strictly decreasing function where the value
ranges from 0 to 1. Due to these selected properties, the activi-
ties which we are trying to measure need to also follow certain
guidelines such as activities require progress to be measurable,
Score/Progress has to be non-strictly increasing function over
time, activities must have a measurable success status or at
least a maximum score and activities must be considered over
time, which means several points of evaluation. With all these
properties and guidelines properly defined, the authors present
a mathematical definition of Difficulty where Difficulty over
time is "a value depending on all previous history of the i-
th realization of an activity « by a learner /”. In order to
test this definition the authors used a custom-made automated
adaptive learning system called the "PLMan learning system”.
This system has 2 components, a game and a web application.
The web application implements the learning system itself and
lets students access their progress status, select level difficulty
, get new activities assigned and upload their solutions which
are automatically evaluated while the teachers are able to
monitor the students work. The activities are based on the
other component of the learning system, the game “PLMan”
which is a custom-developed game aimed at teaching Logic
Programming and Reasoning. It is a Pac-man style game where
the students use the Prolog programming language to control
the character by creating a controller which then is simulated
in the game. The game is automatically assessed throughout its
score which is defined by the percentage of dots the character
eats. A student can send as many controllers as he wants
where each attempt was logged and as soon as he reaches
a score of 75%, it unlocks a new map which were given
difficulty levels by the teachers. The authors then proceed to
show the results of the tests on three maps where the difficulty
obtain trough the mathematical function corroborated with the
difficulty given by the teachers. The authors then state 200
maps like those presented already have enough data to be
analyzed and that many maps have already been re-classified
after the teachers were able to identify some problems of the
maps. They claim that this is a first step which will allow the
framework in the future to automatically analyze the maps
to identify problems and classify them. In conclusion the
authors state that even though their definition of difficulty
has some limitations, particularly in the properties that the
activities must have, it also shows great advantages as it is a
definition which is drawable which allows to show progress
over time, it lets the teachers identify the most troublesome
parts of learning activities and that different activities are
easily comparable.

Another paper that relates to this topic, written by Rina R.
Wehbe e al. |5], explores how design decisions affect the diffi-
culty of platformer games. They start by mentioning that there
are few guidelines and parameters that help game designers in

ivAXR

59

WP4-D4.1

D4.2 — 2nd prototype of SETAs

the assessment of a levels difficulty because of the lack of un-
derstanding of what makes levels difficult in platformers. The
authors then propose an evaluation where they change several
parameters of a game and then test them using real players.
The parameters that were tampered with for testing were the
scroll speed of the controlled character, the size of a target
a player wanted to hit, jump task complexity where single,
double, triple jumps where tested where additional jumps had
a extra target to hit and perspective(horizontal, vertical and z
scrolling). The authors then recorded the perceived difficulty
rating for each condition by the players and also captured in-
game events such as the start of the jump, continuation of a
complex jump combination and errors, distinguished by their
cause. Using this, they tested 4 hypothesis, the first saying
that increasing scroll speed would also increase the difficulty,
second that decreasing the target size would increase difficulty,
third that increasing jump complexity would increase difficulty
and the fourth that the scroll perspective would not statistically
affect the level difficulty. All the parameters were set to
baseline values to obtain a baseline measure so it could be
compared. After obtaining the results the authors concluded
that the first and second hypotheses could be confirmed and
that player scroll speed increase and target size decrease
would make a level more difficult as per the results obtained
in the perceived difficulty of the players and the in-game
events. The 3rd hypothesis was only partly confirmed with
the results because although there was a clear difference in
difficulty from a single jump to a double jump, the same
thing could not be said from the data recorded between the
double jump and triple jump and in fact the data suggested
that triple jump is at least as easy as double jump. The authors
theorize that this happens due to the notion that repeated key
sequences become easier because players get into a rhythm .
However the forth hypothesis was disproved when analysing
the data where vertical and z scrolling were statistically more
difficult than horizontal scrolling but no more difficult than
one another. The authors concluded then all the parameters
tested influenced difficulty in a way and that these results can
have an implication for the understanding of how game design
decisions affect difficulty and the players experience.
Another approach to the problems of Difficulty in Games is
to use Dynamic Difficulty Adjustment (DDA) systems that
adapt the level difficulty to the player which is what S.
Demediuk er al. [6] explore. The authors propose that by
comparing a players performance to a DDA artificial opponent
they are able to measure the skill level of the player. In order
to measure this they implement a framework that first lets
the players play against a adaptive opponent (ROSAS) in a
2D fighting game where the agents options at every step as
well as their heuristic value are recorded. After this step the
heuristic value of the actions chosen by the agent are averaged
in which they call the HVA value. The bigger this value is, the
closest to the optimal solution the agent is performing. By then
obtaining this value of a fixed agent (e.g. Easy,Medium, Hard
bot) using a fight with the adaptive one and by comparing it
to the value the players got, the author claim that they are

V4XR

able to determine a players skill level. In order to test their
approach they took 4 bots which were previously used in a
competition and using ten fights calculated their HVA value
and they were compared to Trueskill which is a “ranking
system used for competitive video games” which is able to
measure a player skill level by having them play with another
player. In the next step of the experiment, 5 human players
played the ROSAS agent where their HVA value plus some
observations about their skill were recorded. In these results
the authors saw a great disparity between the highest and
the lowest rated player in their HVA value which coincided
with the observations recorded. Although the authors weren’t
able to rank them according to Trueskill by playing against
each other, they believe that HVA is a ”promising method for
ranking human players” but note that it doesn’t give the best
indication of the difference between players skill.

Another approach using Dynamic Difficulty Adjustment is
used in a article by J. Hagelback et al. [7] where a study
is done on players experience against static and dynamic
artificial opponents. In this article, the authors set out with
the premise that winning is not what gives the player the
most pleasure, instead playing the game itself is. To confirm
this they conducted an experiment on 60 people where each
played a short session against one of five bots in a RTS game,
2 being static and 3 that could adapt during the game. The
two static bot were set at a easy and medium difficulty while
the adaptive started at a higher level but one had a small
learning rate, one had a big learning rate and the other when
the player had few units its difficulty was greatly reduced in
order to let the player always win where the adaptive bots
algorithm goal was for the game to be even. After playing
against one of the bots, the players were given a questionnaire
where you had to fill out some general question, such as Name,
age, gender, result of the match and also a word pair section
where the authors tried to infer the experienced enjoyment of
facing the bot and the experienced strength and variation of
it. To do so the authors created 6 clusters of words,2 related
to enjoyment,2 to strength and 2 to variation where one had
positive feelings and the other negative. The players were then
asked to cross one of seven boxes where on the extremes you
had one positive and one negative feeling which were not
related(e.g. one positive enjoyment related and one negative
strength related). The results show that the adaptive bots had
the best variation score except for the one adaptive who loses
on purpose which the writers justify because even though it
remained an even game until the player had less than 5 units,
the players tend to remember the last parts of the game. The
authors note that the the adaptive bots had a better enjoyment
score except again for the one who lost on purpose. These
results also show that the static bots were not balanced for the
level of the players, where one was too hard to beat and the
other too easy. The authors conclude then that a competitive
and adaptable game is more enjoyable for the player than a
static one.

ivAXR

60

WP4-D4.1

D4.2 — 2nd prototype of SETAs

B. Discussion

The studies talked about above show some of the work done
in Difficulty in games that relate and helped when it came to
build the solution proposed in this paper. When talking about
this topic we saw that currently there are not very well set
ways or guidelines in order to evaluate a games difficulty so
we saw some papers that tried to provide one for that fact. We
also saw some papers that demonstrated that a players skill and
past experience in games greatly affects its degree of difficulty
and also that most, if not all of the game design choices that
developers make, also affect a game being harder/easier to
complete. Finally we saw some approaches using Dynamic
Difficulty Adjustment systems, one that helped determine the
skill level of a player and another that aimed to prove that
people enjoyed playing these types of adversaries more than
static ones.

In this paper even though we take the concepts from the
works mentioned such as the alteration of game dynamics as
we saw in Maria-Virginia Aponte et al. work and the concept
of difficulty as a function of a players score in a map as in
F. J. Gallego-Durén et al. work, we take a different approach
where we’re not interested in giving a final value of difficulty
in a map but instead taking several maps and ranking them
accordingly to their difficulty.

III. PROPOSED SOLUTION

To test our approach we use levels of a platform game.
We generate errors based on three different approaches and
explore two different metrics to assess difficulty. Details are
presented in the following sections.

A. Environment

The game selected was a platform like game that we built in
order to be able to change several settings (map layout, player
speed, jump parameters, etc). This game has a character which
the player controls that can move sideways in either direction
and jump. Additionally, the environment applies forces such
as gravity and friction to the character, which influence its
movement in the level. The player is tasked with reaching a
flag which grants a bonus reward to the score.

If the player falls out of the map or if the time limit is
reached we consider that the player has failed and in the case
of the player falling out of the map we give a negative reward
to its score. The score is calculated based on the player’s
position relative to the flag, the closest the better, and based
on how much time has passed since the start of the map, the
less the better. Levels are created in a file and every part of
the map can be modified including players, goal and obstacle
positions. The only obstacle present at the moment is a pipe
but more obstacles and enemies can be easily added.

We also developed a level generator to create different maps
to add diversity to the training and evaluation. These maps may
vary in size, the jump holes vary in length and height between
platforms, and obstacles are randomly put wherever there is
ground. Figure 1 shows some examples of levels that can be
generated.

V4XR

-

(a) Map 1 (b) Map 2

" |

1 1 (I |

(c) Map 3

Fig. 1: Example of 3 generated maps

B. Solver

The solver used in this work is based on the Learning Real
Time A-Star (LRTA*) discussed in [8] and originally proposed
in [9]. This solver works well for this case since we have a
finite environment and small maps to explore. This algorithm
is guaranteed to find a goal in these conditions.

The way it works is that initially we give it a problem it
needs to solve. This problem includes the initial state, our
goal, and the actions available in the environment. Initially
the algorithm creates an empty table which will store the next
state based on the current state and the action performed (table
result) and creates another table which is used to store cost
estimates indexed by state (table H).

The LRTA* agent receives the current state at each step
of the environment execution. It checks each state in the H
table. If not found it adds an new entry for it as well as for
the result table for the state and each of the actions. As the
agents is motivated to explore every state in the environment,
it then checks if any entry in table result is null, meaning that
(state, action) is not explored, and in this case it selects that
action for execution. If in the current state, every action has
been explored, the agent selects the one with the least LRTA*-
Cost. After performing the action in the environment the agent
updates the result table with the resultant state and the H table
with least LRTA*-Cost for each action.

The LRTA*-Cost is a function which given a state, action,
next state (based on action), checks if the next state as been
explored, if not an estimate of the least cost it takes to reach
the goal is computed based on heuristics. If the next state has
been explored then it returns the value in the H table and adds
the cost of the action.

The heuristic used for this game computes an approximation
of how many steps would be required for the character to reach
the goal based on its current position.

C. Error generation

To determine the difficulty, we simulate human error and
induce it on the solution computed by the solver. The general
idea is to check how those deviations from the optimal solution
affect the performance of the agent, and use that information
to predict difficulty.

We explored three different methods for the generation of
eITors:

« Continuous random

Every time the agent chooses an action to perform in

ivAXR

61

WP4-D4.1

D4.2 — 2nd prototype of SETAs

the game, there is a 5% chance that it chooses a random
action instead of the one given by the solver. The action
do nothing is added to the set of actions.

Continuous on close keys This simulates the mistake of
pressing the wrong key, hence executing one action next,
in the control scheme, to the one proposed by the solver.
Every time the agent chooses an action to perform in the
game, there is a 5% chance that it substitutes the action
by one defined by a key proximity table. For example,
the action close to the right key (that moves the character
to the right), is either jumping or a key that does nothing.

Jump timing This error simulates missing the perfect
jump timing. To compute this, we identify “jump-zones”
on the solution provided by the solver. These are
positions close to where the agent is supposed to jump
according to the solution provided by the solver. Once
the agent enters a “jump-zone”, a function is called to
define where the agent will jump, taking in consideration
that the closer the agent is to the original jump point the
more probability the agent will have to jump there, as it
can be seen in Figure 2. The actions the agent takes up
until the jump occurs are always to move forward. The
way we define the jump zone is by running the solution
provided by solver and when we encounter a jump, we
save the position the agent was 15 ticks before and set
that as the starting point of the “jump-zone”. The way
we determine where the jump will occur is given by the
probability mass function of a binomial distribution

Fig. 2: Example of a jump when using the Jump Timing error
generation. The red circle represents the original jump position
while the graph below shows the distribution, relative to the
position above, of where the jump will occur

We consider these three types of errors in order to cover
the usual types of mistakes players make in a game. The
first two relate to a “misclick” type of error where the player
wanted to press a button but by mistake it clicks another. The
third way we generate error simulates a perception error that
happens when a player miss calculates where he should jump
and presses the button either too late or too soon

V4 XR

D. Measures of difficulty

To assess the difficulty of a level, two metrics were used:

« Probability of success

The Probability of success is the percentage of time that
the agent is able to reach the goal after performing the
level a few times, while applying the error.

Difficulty of learning

Difficulty of learning is a given value between 0 and 1
based on how many playtroughs of the map were needed
for the solver to converge into a path.

We’ve chosen these metrics based on few assumptions.
First, the main objective of the player is finishing the level
by reaching the goal. A player looking at a map even if the
person hasn’t played the game, just by knowing the actions
that are possible, can make a path that would look similar
the the one obtained with the LRTA* algorithm. The problem
is that players can make wrong judgments and even if they
make the right ones can still make mechanical errors that can
lead to failing the objective. In levels we low difficulty even
if players make a mistake, they can recover and still finish the
game, while in harder levels if players make a wrong decision
or even fumble on the mechanical side (e.g. pressing the wrong
button) it leads more easily to failing the objective.

The other metric of Difficulty of learning which is based
on how many trials it took for the agent to converge into the
best solution can be correlated with the other metrics above to
check if a game with more or longer paths can make the game
harder for the player. We propose that the latter metric serves
to help us understand why a map difficult and not exactly
determine the difficulty of the map itself. Also, we note that
the ways humans explore a level will be different from the
one in LRTA*.

These metrics aligned with the specific game we used, but
we believe that they can be applied to other games, as long
as they an explicit goal state and explicit score at the end.

IV. RESULTS

Using a tool that contained the elements mentioned in the
section above we obtained the following results. We generated
60 maps using the map generator, some of which you can
see in figure 3, then proceeded to train each of them with
3 different parameters. One where the world gravity had the
default value, one with +10% gravity and another with -
10% gravity. After training, we ran 2000 simulations of each
map/parameter pairing for every type of error generation and
recorded the results.

In order to analyze the different types of error generation,
we took 10 random samples of the maps running at default
gravity and ordered them according to the Probability of
Success using the Continuous Random error generation.

ivAXR

62

D4.2 — 2nd prototype of SETAs \v4 X R

Probability of success using different types of error generation

. Continuous
Timing
N Close
804
7
2
3 60
I+
5
a
S
Z
Z 40
®
F-1
g
&
| I | I
0 I I I
20 36 55 3 31 9 35 48 37 59

Map number

Fig. 4: Graphic showing the results of analyzing the Proba-
bility of Success using the different error generation types at
default gravity

(g) Map 36

]
When looking at the results from Figure 4 we can see that

the Continuous random and the Continuous on close keys are
really similar on most maps with the latter performing just a
little bit better which makes sense since these types of error
generation are very alike except that the Continuous on close
keys removes at each step the option furthest from the key
to be pressed. When we look at the Timing error generation
it usually generates worse performances than the other two
although giving a similar ranking, which also makes sense
since it emphasizes the errors on the jumps, which are the
critical parts of the map. But on some other maps it generates
(n) Map 7 better performance than the other two. When we look at the
maps in question (3 and 35 in figures 3c and 3f, respectively)
and analyze them we can see why. The reasoning of why the
timing error generation gives such different results becomes
more clear, since on map 3 it doesn’t matter if the jump
(p) Map 23 is mistimed because if the character keeps moving forward,
the jump is not wide enough for him to fall. In map 35 this
happens because the jump to the second platform happens on
top of the pipe and if it delays a bit, the agent will fall to
the ground right next to it and still make the jump to the
second platform After looking at these maps, in particular
map 3 when compared to map 20 which is ranked harder in
the continuous type errors even though our playing experience
tells us otherwise.

(t) Map 28 With this we reach the conclusion that the timing error
generation does give us a better ranking of the difficulty
between maps overall but that other 2 also offer a different
perspective on what type of errors a human makes and that a
combination of the two types can be further analyzed in the

(i) Map 51

(r) Map 45

(u) Map 5 (v) Map 26 future.
Fig. 3: Figure contained the maps used ordered by Difficulty To test out the differem' metrics proposed we selectgd 20
of Success using Timing error generation with ranking shown —Mmaps using random sampling and ranked them according to
on top left corner in white each metric. In figure 5 we can see these results which are

ordered by the ranking of Probability of Success Looking

WP4-D4.1 ivAXR 63

D4.2 — 2nd prototype of SETAs

®

o

Iy

~

o

~®- Probability of Success
mmm Difficulty of Learning

l”‘“'ﬂ“ |

Height difference

1

-80

Probability of Success(%)

WP4-D4.1

11 13 38 33 36 19 51 22 21 41 31 7 44 23 0 4537 28 5 26
Map number

Fig. 5: Graphic showing the results of ranking 20 maps on the
different metrics at default gravity, being 1 the easiest and 20
the hardest

at the figure above we can see that as a general trend that
as the ranks for Probability of Success go up, the ranks for
Difficulty of Learning also tend to get higher. However we
do see some maps where the rankings don’t correspond such
as in maps 28 and 5 where map 5 is ranked just higher when
comparing Probability of Success but much lower in Difficulty
of Learning. When we look at the maps in figure 3t and 3u,
respectively. At first sight it might seem that map 28 would be
more difficult since it has more intricate jumps, but what the
Probability of Success metric tell us otherwise. Furthermore
we see that the difficulty of learning metric shows that map 5
is a more simple map of which makes us affirm that map 5 is a
map which heavily relies on skill. This can be seen on further
maps such as 26. We also see that the difficulty of learning
still has some outliers, such as, in map 0 and map 23 (figures
3q, 3p) because it evaluates the complexity of the map in the
optic of the algorithm used but we believe that a metric like
this can help to contextualize the Difficulty of Success metric.
Next up we wanted to know the effect that the jump height
difference and length had on the difficulty of the map using
the Continuous Random error generation and the Probability
of Success metric first at default gravity and then with +10%
increased gravity to see how different a different dynamic
would affect the correlation. We obtained the following results
for maps that have 2 jumps which can be seen in Figure 6
As we can see from the top figure, the longer the jump
is the more difficult the map becomes, as expected, but we
can also check that, contrary to our expectations, the height
difference between platforms in jumps does not seem to affect
the difficulty by very much, if at all. We initially thought that
this was due to the character in the game has a big jumping
capability which makes the height less relevant but then after
checking the results with increased gravity we notice that isn’t
the case since we see the same trend on the bottom figure.
We can conclude then that the jump height difference did
not affect the difficulty of the maps tested. This may not be

~ - 40
20
--
o 1 2 3 4 5 6 71 8 5 10 [i
Jump lenght value
-100
o
- 80
g
s]
H 60 ¢
3 a
s S
= 2z
=] =
g “3
3
) &
20
s
01 2 3 4 5 6 7 8 5 1 [ymom
Jump lenght Volos
Fig. 6: Results showing correlation between jump

height/length and difficulty. (Top) default gravity, (Bottom)
Gravity increased by +10%.

the case for every map since we set our maps had a set max
height difference of 2 between platforms.

Finally, we wanted to check how the dynamics of the game
itself can impact the difficulty of maps which can be seen in
figure 7

Probability of Success difference on average for diferent gravities
25 L)

20

Difference(relative to base value) in %
o

09 10 11
Gravity

Fig. 7: Graphic showing the results of analyzing the Prob-
ability of Success using different gravity values with the
Continuous Random error generation

This is a very straightforward result where if you increase
the gravity our character will reach the goal less often on
average and vice-versa, as expected. But this shows that tuning
of the dynamic of the game itself such as gravity can greatly

ivdXR

64

WP4-D4.1

D4.2 — 2nd prototype of SETAs

affect a level difficulty. This can be used in order to adjust
the game to players of different skills. As mentioned in
the introduction and in related works, maintaining a players
interest is of the most importance, and so having options for
players with higher skills and lower skills without having to
change the map itself or create a new can be very useful.

V. CONCLUSIONS AND FUTURE WORK

In this work we created a tool which can automatically
analyze and order a large number of maps according to their
difficulty. Our goal is to provide mechanisms to help level
designers to test and sequence different levels.

In our approach we used a map generator to have a big
sample size of maps that would be as varied as possible, we
trained them using different values for gravity to understand
how a different dynamic of the game would affect the difficulty
then proceeded to use 3 different ways to generate errors
while playing in order to better simulate human behavior while
playing and recorded the results and evaluated using different
metrics that helped us analyze the difficulty of the map and
contextualize the ranking.

In the results we saw that by using different types of errors
that people usually make, the ranking of levels changes. This
allows to provide different ordering of the same levels based
on the type of player each individual player does. We did
however find that the timing error generation did produce
rankings which better corresponded to our own personal
rankings. We were also able to rank the maps properly using
our Probability of Success metric and helped contextualize
it with the Difficulty of Learning metric which helped us to
understand what makes a map difficult. Finally we were able
to understand how the layout of the map affected its difficulty
by correlating the jump size/height difference and the difficulty
which can help when trying to design maps with a difficulty
in mind.

In future work we plan on adding/improving on the metrics
presented that might give a better ranking on the maps used
and help us better understand why the map is ranked that
way and also develop our error generation methods in order
to better simulate human behavior.

REFERENCES

[1] E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider, J. Lowdermilk,
D. Truong, S. Cooper, and Z. Popovic, “The impact of tutorials on games
of varying complexity,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2012, pp. 59-68.

[2] M.-V. Aponte, G. Levieux, and S. Natkin, “Measuring the level of
difficulty in single player video games,” Entertainment Computing, vol. 2,
no. 4, pp. 205-213, 2011.

, “Scaling the level of difficulty in single player video games.” in
Entertainment Computing — ICEC 2009, S. Natkin and J. Dupire, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 24-35.

[4] F. J. Gallego-Durédn, R. Molina-Carmona, and F. Llorens-Largo, “Mea-
suring the difficulty of activities for adaptive learning,” Universal Access
in the Information Society, vol. 17, no. 2, pp. 335-348, 2018.

[5] R. R. Wehbe, E. D. Mekler, M. Schaekermann, E. Lank, and L. E.
Nacke, “Testing incremental difficulty design in platformer games,”
in Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, ser. CHI "17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 5109-5113. [Online]. Available:
https://doi.org/10.1145/3025453.3025697

131

V4XR

[6] S. Demediuk, M. Tamassia, W. L. Raffe, F. Zambetta, F. F. Mueller, and
X. Li, “Measuring player skill using dynamic difficulty adjustment.” in
Proceedings of the Australasian Computer Science Week Multiconference,
2018, pp. 1-7.

J. Hagelback and S. J. Johansson, “Measuring player experience on
runtime dynamic difficulty scaling in an rts game,” in 2009 IEEE

[7

Symposium on Computational Intelligence and Games. 1EEE, 2009,
pp. 46-52.

[81 P. N. Stuart Russell, Artificial Intelligence: A Modern
Approach, 3rd ed., ser. Prentice Hall Series in Artificial
Intelligence. Prentice Hall, 2010. [Online]. Available:

http://gen.lib.rus.ec/book/index.php?mdS=c37ce53726fb43 1e5815f9b1e573bfd6

[9] R. E. Korf, “Real-time heuristic search,” Artificial intelligence, vol. 42,
no. 2-3, pp. 189-211, 1990.

ivdXR

65

D4.2 — 2nd prototype of SETAs \v4 X R

ANNEX A4

WP4-D4.1 ivAXR 66

D4.2 — 2nd prototype of SETAs \v4 x R

WP4-D4.1 ivAXR 67

WP4-D4.1

D4.2 — 2nd prototype of SETAs

V4XR

Validating the plot of Interactive Narrative games

Carolina Veloso
INESC-ID
Instituto Superior Técnico,
Universidade de Lisboa
Lisboa, Portugal
carolina.veloso @tecnico.ulisboa.pt

Abstract—The authoring of interactive dialogues in video
games is an overwhelming and complex task for game writers.
Developing an Interactive Narrative that balances authorial
intent and players’ agency requires frequent in-depth testing. The
limited range of tools to assist authors in verifying their story can
limit the creation of more complex narratives. In this paper, we
discuss the challenges of Interactive Story design and provide
a model consisting of a set of metrics for testing interactive
dialogues. Using this model, we developed a prototype for the
Story Validator tool. This debugging tool allows game writers to
experiment with different hypotheses and narrative properties
in order to identify inconsistencies in the authored narrative
and predict the output of different playthroughs with visual
representation support. We conducted a series of user tests, Using
the Story Validator, to investigate whether the tool adequately
helps users identify problems that appear in the game’s story. The
results showed that the tool enables content creators to easily test
their stories, setting our model as a good step towards automated
verification for assistance of authoring interactive narratives.

Index Terms—Interactive Narratives, Authoring Systems, Ver-
ification, Automated Playtesting

I. INTRODUCTION

The presence of an immersive story in video games is often
a central part of game experience and, consequently, a concern
of design [1] [2]. Such games combine interactivity and
storytelling as an Interactive Narrative (IN), often nonlinear,
that allows the player’s actions to alter the course of the story
(3] [4]. At the core, IN functions similarly to the Choose-Your-
Own-Adventure storybooks [3]], where the reader is faced with
various decision points at which they must make a choice,
branching the story in different directions, often leading to
different outcomes.

Deploying IN in games has enormous potential for enabling
the creation of interactive systems that combine player interac-
tion and dynamic plots, however, authors face many challenges
when writing this type of stories [6]]. Developing an IN where
players can feel immersed and engaged involves making the
player’s actions and choices have a powerful influence on the
narrative’s direction, making it challenging for the author to

This work was supported by the ivdXR (Intelligent Verification/Validation
for Extended Reality Based Systems) project, EU H2020-ICT-2018-

2020/856716, and by the National Funds Through FCT, Fundagdo para a
Ciéncia e a Tecnologia, under project UIDB/50021/2020.

978-1-6654-3880-5/21/$31.00 ©2021 IEEE

Rui Prada
INESC-ID
Instituto Superior Técnico,
Universidade de Lisboa
Lisboa, Portugal
rui.prada@tecnico.ulisboa.pt

guarantee a well-formed story. Each branch in the story has to
be carefully tailored by the game’s writer, who consequentially
has to predict the different possible player’s behaviours that
can affect the story at various states so that they can present
those choices to the player.

Most traditional approaches rely on extensive and rigor-
ous playtesting to obtain information on how the players
experience the narrative and what might need improvement.
Playtesting provides insightful information that is not antici-
pated during development, helping authors ensure that both
the game’s narrative and the player’s behaviour are well-
balanced [7] [8]. However, obtaining quality feedback for a
detailed analysis can be challenging, expensive, and time-
consuming [9]. Various works have offered different solutions
to handle narrative conflicts caused by user behaviour in-game.
However, hardly any works have focused on letting the author
simulate and question their narrative during development.
Instead, they opt for online Al approaches (such as drama
managers [T0]) that, during gameplay, provide ways to dy-
namically adapt the narrative and resolve conflicts created by
unintended player’s actions. These approaches create changes
to the narrative that the author might not have intended, leading
them to lose control over their story.

On the other hand, most authoring tools, such as Twine [[11]
and Ren'Py [[I2], while they facilitate the creation of IN, they
lack the proper tools to identify possible continuity errors, to
keep track of specific narrative properties and to envision the
output of playthroughs prior to human playtesting. Instead,
these tools rely heavily on the author’s intuition to foresee
these challenges or on an exhaustive number of later playtests.

This work outlines the development of a tool that supports
game writers in creating IN whilst maintaining the human
author’s directorial control. Essentially, we strive to main-
tain the idea of authorial intent [13] and develop a system
that allows human authors to express their artistic intentions
without feeling constrained. As a product of this work, we
have designed, developed, and tested a prototype for the Srory
Validator, which traverses all possible narrative paths of a IN
and provides insightful data on different story metrics and
design issues encountered via visual representations.

ivAXR

68

WP4-D4.1

D4.2 — 2nd prototype of SETAs

II. AUTHORING INTERACTIVE NARRATIVES

The authoring of interactive stories in video games is an
overwhelming and complex task for game writers, both in
narrative design and implementation. We identified four main
challenges pertaining to the development of IN:

1) Authorial intent vs player agency. One of the most

challenging problems with IN is the necessity to balance
authorial intent and player agency in the context of
storytelling [14]. According to Riedl, authorial intent is
the trajectory that the game writer wishes the player
to follow, regardless of how the player acts during the
game. Because IN allows the user to interact freely
within the story world, users often have the power to
behave in ways that are inconsistent with the plot. This
can either prevent the plot from advancing or make the
player experience the story in ways that the creator did
not intend.
Narrative exponential growth. As the plot grows in
complexity and the number of decision points increases,
the authoring experience will often require substantial
changes to keep the narrative coherent, which can be-
come overwhelming for the author [T5]. Not to mention
that the impact a choice has may end up only revealing
itself in future states of the story, which is not always
easy to predict.

Gameplay variables that affect the story. Besides what

choices the player makes, the story’s development can be

based on different variables and status that are updated
throughout to game. A common example is the “karma
systems”, which consider the player’s good and evil
deeds and shape the world around them as they progress.

In more complex narratives, game variables can become

challenging to keep track of, and their consequences

may only unravel in later states in the game, which
is not always easy for the author to foresee during
development.

4) Measuring the impact on user’s experience. The
player play-styles are reflected not only in how they
interact with the narrative but also in how they expect the
story to unfold [I6]]. Due to the complex nature of IN, it
is difficult for the author to predict the player’s behaviour
and overall emotional experience. This is challenging to
predict without prior human playtesting, as it is hard to
ensure during development.

2

-

3

=

III. LITERATURE REVIEW
A. Interactive Drama

In order to maintain narrative coherency even when the
player has freedom of choice, some past approaches have
focused on the idea of integrating real-time Artificial Intel-
ligence (AI) methods to shape the narrative, allowing players
to interact with the game freely but, at the same time, making
sure the narrative still follows a coherent structure. A popular
example, first proposed by Bates [17], is the use of a drama
manager. A Drama Manager (DM) is an omniscient agent that

V4XR

monitors the game world and guides the player’s experience
through the story by searching for possible future plot points
based on the evaluation of the current game world while still
allowing the players to interact freely.

For instance, one of the most famous examples of the
implementation of a DM is the Mateas and Stern interactive
drama Fagade [T8]. Fagade uses its DM to monitor and update
the simulation in real-time in response to text the user inputs
by selecting the next story beat.

Like in Facade, Riedl et al. presented the prototype for
INTALE [19], in which the agents are directed by a DM called
Automated Story Director. The Automated Story Director
handles user interactions by maintaining a script of expected
events and planning out new narrative follow-ups to respond
to the player’s actions and achieve all concrete narrative goals
pre-defined by the author.

The studies mentioned above show that online Al ap-
proaches, particularly drama managers, are a popular solution
to guarantee narrative coherence while allowing the player
to interact with the game freely. Unfortunately, there has
been hardly any work done regarding off-line approaches
that attempt to identify possible narrative problems during
development and allow the author to validate their narrative
with different story metrics and predict different playthroughs’
output.

B. Authoring Tools

Since the authoring process remains one of the most sig-
nificant challenges in the development of interactive stories,
there is a need for tools, toolkits and authoring systems that
assist game writers in creating their content. Authoring tools
for IN provide different visual representations and structural
elements that allow authors to write their creative works.

With this in mind, we explored some of the existing
authoring tools currently available for creating IN and their
limitations, namely Tinderbox @], Ren’Py ﬂ@], FAtiIMA
Toolkit [21]] and Twine [IT]. Our findings revealed that these
authoring systems lacked the proper tools to analyse important
narrative metrics and identify possible continuity errors. While
these tools were designed to facilitate the authoring process,
they nevertheless rely heavily on the author’s diligent and
methodical eye to predict all gameplay scenarios and possi-
ble complications that might arise, making story creation a
wearing, expensive, and time-consuming process.

Nonetheless, due to its wide adoption and easy to work
architecture, we concluded that Twine was the most promising
candidate for the incorporation of our model, which we will
describe in the next section.

Twine is a hypertext-based authoring tool designed to
facilitate the creation of interactive stories with branching
narratives. The creation of games with Twine requires only
two elements: Passages and Links. Passage is the Twine’s
terminology for the nodes on the story graph that players
navigate through. Each Passage contains a block of text that
is shown to the player when they reach that Passage during
gameplay. Additionally, Passages can also possess one or more

ivAXR

69

WP4-D4.1

D4.2 — 2nd prototype of SETAs

Fig. 1. A bird’s-eye view of a storyboard in Twine.

tags, which function as labels that add information to the
Passage but are not visible on the published version of the
story.

Similar to branching narratives, where arcs connect nodes to
each other, Passages are connected through Links, represented
by an arrow on Twine’s storyboard. To the player, these are
displayed as points of interaction or decision points. The Links
can be guarded by variables. Twine has a <<if>> macro,
which is used to test the current value of the story’s variables.
These macros will influence the flow of the story since certain
Links will only be available to the player if the conditions of
the <<if>> macros are true.

Because Twine is designed to develop and publish inter-
active stories on the Web, all its data is encoded in a single
HTML file. However, while HTML is the default hypertext
output for Twine, we found that exporting Twine’s internal
XML data in a JSON format would be an added value for
reasons of simplicity and easier processing. This JSON file
contains each Passage’s data, including the Passages’ text,
name, id, Links, and position on Twine’s storyboard.

IV. A MODEL TO TEST INTERACTIVE NARRATIVES

We sought out to develop a tool that supports game writers
in the creation of IN in stages before human playtesting
by letting the author explicitly test different hypotheses and
narrative properties to identify possible design mistakes. To
be useful to authors, such a tool needs to provide insightful
data on different story metrics and identify design issues that
a player could encounter during gameplay.

We take the assumption that the story space can be repre-
sented by a traversable graph with nodes (Passages) and edges
(Links) that can be guarded by variables, and that the tool
uses a Depth-First Search (DFS) based algorithm to traverse
all possible narrative paths to gather data. With this in mind,
we defined the following as useful narrative metrics:

« Number of paths. Enumeration of all possible traversals
of the story graph, including the Passages the player visits
on each narrative path. As a result with get the number of
visits to each Passage as well and get an idea about which
parts of the story are probably more often experienced
by the players. When searching the graph, the algorithm
begins at the starting node (obtained from the JSON data)
and explores one Link at a time, adding each Passage

ivAXR

V4XR

visited to a stack. When it reaches an ending, the total
number of paths is increased by one, the elements in
the stack are saved as a path sequence, and we begin
popping nodes from the stack until we find a node with
an unvisited Link.

Endings Hit Percentage. At the end of the game, the
story reaches different endings, depending on the play-
ers’ choices and state variables. The distribution of the
endings players reach is often a concern of the design. As
the search algorithm traverses all the paths, it keeps count
of how many paths reach each ending. It then calculates
the corresponding hit percentage. To ensure that, the story
ending nodes need to to be identified. For example, by
using the Twine tag system and adding an ENDING-
POINT tag to the Passages that are defined as an ending
(see Fig.).

Ending 1

+Tag ENDING-POINT +

Suspect: Ok, ok I confess. I was the one who killed her!

[ENDING 1: Good Detective]

Fig. 2. Example of an ENDING-POINT tag in Twine.

Stroke Points. Whenever the search algorithm reaches an
ending, we compare the current path sequence with the
previous one, intersecting their values to find common
nodes in all paths. Eventually, we can identify which
Passages are visited in all narrative paths. We named
these Passages, Stroke Points. These can be part of the
designer goals, as they can be useful to ensure some parts
of the story is always conveyed to the player. However,
it may happen that the author does not want to withdraw
the player’s ability to choose, in which case Stroke Points
may become a problem.

Lost Plot. Identifies narrative sections that, although in-
cluded in the story by the author, are never reached in an
actual playthrough due to some design or implementation
error, for example, the conditions set in the <<if>>
macros are never met. Ideally, in a well-constructed inter-
active story, all Passages should be visited at least once,
and all paths should reach an ending. As the algorithm
traverses the story, it keeps track of the Passages visited.
Eventually, it can identify the existence of Passages
that are never reached by any possible narrative path.
Additionally, the iteration of the search may end in Dead-
End, as it stops once it reaches a node without any edges
(i.e., a Passage without any possible Links). Normally,
this node is expected to be an ending, but it can also be
a Dead-End — a non-ending Passage that impedes the
player from progressing. Therefore, if the end Passage
does not have an ENDING-POINT tag, it is identified a
Dead-End.

« Evolution of Variables. A branching narrative might

70

WP4-D4.1

D4.2 — 2nd prototype of SETAs

contain different variables that the author needs to mon-
itor. As the algorithm visits each Passage, it keeps track
and updates those variables. This is used in the tool to
display the values of the variables in a given path and to
trace a timeline of the variable variations through a given
playthrough.

The above-mentioned metrics were defined based on our
personal experience as developers of interactive stories using
Twine and based on a reflection to address the authoring
problems discussed in section [} The same challenges were
later reported by the user study’s participants in section [VI-D]
which corroborated our ideas.

V. STORY VALIDATOR PROTOTYPE

The implementation of the Story Validator tool follows
the architecture presented in Figure [3] It is able to load an
interactive story (in JavaScript Object Notation (JSON) for-
mat) created using Twine’s authoring environment. It creates a
representation of the story as a branching tree that is traversed
by a Depth-First Search (DPS) based algorithm. It uses a DFS
algorithm to be greedy in the exploration to explore a given
story path until the end, as a human player would experience
the story (i.e., starting at the root Passage and traversing
through several Passages until reaching an ending point). The
information collected is presented to the user through the use
of a graphical interface (GUI), depicted in in Figure @]

Twine Story Validator

load I oFS
story.htmi gis

- number of paths
- endings hit percentage

stroke points
o selectpath | _ ot plot
- variables evolution
story.json i
Visualize:
=]

l

Path Dialog Tree

Main Dialog Tree

GUI

Path Log Report Main Log Report

extract

PDF Log Report

Fig. 3. The general architecture of the Story Validator tool.

The prototype was built in Python 3 using tkinter for
the Graphical User Interface (GUIﬂ The tool’s GUI was
developed following the conceptual organisation presented in
Figurcm

Using the Story Validator’s GUI, the user selects (1) a JSON
story file to be analysed by the tool. For this analysis, the
user picks one or more options from a selection of analysis
conditions (2), based on the metrics defined in section [[V]

IThe source code can be found at https://github.com/iv4xr-project/
in-story-validator

“Note that elements 4, 9 and 10 were added only after Phase 1 of user
testing.

Fig. 4. The Story Validator prototype GUL

T Load story

2. Select between
Jysi

5. the
filters Main Dislog Tree
(analysis of all narrative paths)

7. Areato display the
Path Dislog Tree
(analysis of the path selected)

3.selectapath

4.Graph Timeline

6. Areato display the 8. Area to display the
log complete report log

il i
of the Main Dislog Tree of the Path Dislog Tree

5 Toogle Tooltips
10 savereport |

Fig. 5. The Story Validator GUI conceptual structure.

(see Fig. [6). Each one of these conditions will influence
different visual aspects of the Dialog Trees (5 and 7) and what
information is shown on the Log Reports (6 and 8).

Analysis Conditions

™ Number of Paths

[~ Ending Hit Percentage [blue v]
I™ Stroke Points

™ LostPlot

™ Variable Value Evolution

™ Variables value inside Threshold |red v

Min: [0
Max: |1

Verify
Fig. 6. The panel of analysis conditions.

Additionally, the user can select a story path to analyse in
detail which will appear on the Path Dialog Tree (7) area.

As stated previously, this work’s main objective is to support
game writers by evaluating their game’s narrative and working
as a debugging tool. Next we will present how we envision
authors using our prototype tool to identify and solve problems
present their IN.

« Keeping track of Passages visited. Often during the
creation of IN, there is the need to add, change and
remove Passages and this process can quickly impact the

ivdXR

71

D4.2 — 2nd

WP4-D4.1

prototype of SETAS

dynamic of the story. However, this is not always easy to
predict as the impact of a Passage can reveal itself only
in future states.

Furthermore, a branching narrative will often have several
narrative paths that the player can take, resulting from
their choices. For that reason, as the number of possible
narrative paths grows, it becomes tougher for the author
to keep track of the Passages that are visited.

The tool’s algorithm runs through the story by selecting
different options until it reaches an ending. Then it starts
a new playthrough and repeats, choosing other options.
In the end, the Main Dialog Tree (5) displays a tree with
all the narrative paths that the player can take, giving the
author a general idea of how the story flows. In order
to make a more in-depth assessment, the Main Report
Log (6) displays which Passages are visited in each path.
Additionally, the user can pick a path to analyse in detail
(3), which is displayed on the Path Dialog Tree (7).
Keep track of endings’ reachability. Depending on the
choices in dialogue made, the player is led to different
endings. However, it is difficult for the author to predict
and monitor the endings’ distribution without it being a
laborious and time-consuming task. As a design objective,
the author may want to create certain restrictions on the
distribution of the endings, such as having an ending
that is more common to obtain or an ending with only
one possible path. If the analysis condition Endings Hit
Percentage is selected, the Main Report Log (6) then
provides the author with percentages on the likelihood
of reaching each ending. Besides, on the Main Dialog
Tree (5), the user can observe the paths’ distribution if
the analysis condition Number of Paths is selected.
Keep track of the story’s variables. In IN, the path
in which the narrative develops can be dependent on
different game’s variables. Having variables updating
depending on the characters or plot state can make the
interactive story more interesting for the player; however,
it is difficult for the author to keep track and control those
values over multiple interactions. The tool can identify
and keep track of all variables defined by the author
and their values throughout each path. The user can
also select which variables they wish to analyse (up to
three). By selecting the analysis condition Variables Value
Evolution, the user can observe the value changes of each
variable. By selecting the analysis condition Variables
value inside Threshold, the tool highlights the Passages
where the variables have a value between the MIN and
MAX values, both defined by the user. The story variables
are also presented in a dotted chart (4), displaying the
value’s changes throughout the story.

Avoiding Dead-Ends and losing plot. Dead-Ends typi-
cally happen due to an error in defining the Passages that
should come afterwards, meaning they have “entering”
conditions that are impossible to meet or if the path is an
“endless” path. The designer must identify these cases,
as they abruptly stop the player from continuing playing.

V4XR

However, doing so is difficult due to the combinatorial
nature of the exploration of the story. Furthermore, it is
also essential to identify if there are sections in the story
that are never visited, at the risk of losing important parts
of the plot. If the user selects the analysis condition Lost
Plot, the Main Report Log (6) will print out the Passages
that were never visited and display which paths were not
able to reach an ending. Additionally, on the Main Dialog
Tree (5), Passages that are never visited will appear as
single nodes with no edges connected to them, and on
the Dialog Trees (5 and 7), Dead-End nodes will take on
a rectangular shape in oppose to its regular round shape,
so they are easier to identify for the user.

A. Emulating personas and playstyles

As mentioned in section [[} the players’ play-styles are
reflected not only in how they act within the plot, but also
on how they expect the story to respond to their actions.

The author may want to guarantee that some types of players
follows a particular trajectory. Therefore, our intent was to
develop an agent that simulates various playthroughs of the
game, emulating the behaviour of different players, in order
to predict user experience and study the story’s output.

In their work, Stahlke et al. @j] developed a framework,
named PathOS, that simulates human testing sessions using
intelligent agents. These agents mimic the behaviour of hu-
man players by following a set of heuristics (e.g., curiosity,
aggression, and completion), that are configured to reflect
different play-styles. Our work proposes a similar approach,
by letting the author assign different weights to each of
the story variables to create different personas that represent
different playstyles. These personas will have a tendency to
favour options in the story that have stronger impact in certain
variables.

For this, we use an informed Greedy search (see Algorithm
[I) using as heuristic based on the defined weights for the
“persona” under test. Each story has a set of variables V =
(v1,v2,...,v,), where n is the total of story variables, and to
each of these variables V, the writer assigns weights W =
(w1, wa, ..., wy,). The heuristic then drives the playthrough of
the story to give preferences to Links that raise the value of
variables it gives higher weight.

For example, if we treat the variables as “emotional states”,
the author may study how the story unfolds given the behavior
of a more aggressive type of player in their game scenario.
They can give greater weight to an “angry” variable that de-
picts the emotion of a character in the story and, consequently,
drive the algorithm to choose the options that lead to higher
value to that emotion. By specifying different weights to each
story variable (e.g., 75% fear, 15% confusion, 5% angry), the
author creates agents with distinct preferences that play the
game in different ways.

It is important to note that since the greedy algorithm does
not consider the overall problem and always makes a locally-
optimal choice at each step based on the information it has,
it often does not produce the most optimal solution. However,

ivAXR

72

D4.2 — 2nd prototype of SETAs

Algorithm 1: Greedy search using heuristic based on
the defined weights.
Function Greedy_step (hightest_total, passage,
V, W):
/* gather all the passage’s links */
links = passage.get(”links”)

for [in links do

/* see that v, is the value update */

/* of the variable n on link / */

total; = vy * wy + Vo kW + ...+ Uy k Wy
end
/* chose link that maximizes the total value */
/* assume z is the total number of links */
chosen_link = max(total;,, totaly,, . . ., total;,)

/* update highest total value */

highest_total = highest_total + chosen_link

/* chose link with highest value to visit */
next_passage = lyax

/* move to next iteration */
Greedy_step(highest_total, next_passage, V, W)

we need to remember that, in most cases, the human player
is also unaware of the overall game-space during gameplay
and, therefore, makes the choices they believe to be the most
optimal at each step, based on the information they currently
have and their player profile. Thus, we believe that a greedy
algorithm best emulates the human behavior in this scenario.

VI. EXPERIMENTAL RESULTS

The following section presents the methods and results of
two user studies that were conducted with the intent of: finding
out if the tool adequately helps the users identify problems in
the game story, and determining whether users can operate the
tool with ease and identify usability issues.

A. The Scenario

For the tests we used Twine’s authoring tool to create an
interactive story, which we named “The Murder Case”.

The story has the following setting: the player plays a
detective tasked with solving a murder. The detective’s main
suspect is brought to the police station for questioning and,
since existing evidence is not sufficient, the player will need
a confession. However, there is a catch: the suspect NPC is a
very wealthy man and upsetting him during questioning will
lead him to ask for his lawyer and the detective to lose the
case. Depending on the dialogue choices made when talking
with the suspect, the player is led to different endings that
reflect their crime-solving skills. To stipulate the effect the
player’s choices have in the narrative’s unfolding, we attach
(and update) variables to each dialogue option. These variables
represent the different emotional states of the suspect NPC:
anger, confusion, and fear.

V4XR

The scenario contains 3 different endings (“Good detective”,
“Lawyered” and “Not enough evidence”), 14 Passages and 20
possible narrative paths players can take.

Additionally, we created an alternative version of the story
with added issues to be used in the User Test 2. This version,
named “TMC - failed version”, includes 2 Passages that are
never visited and 3 Dead-Ends.

B. User Study 1

In the first study, we examined how the users feel about
the tool’s design and checked its usability. The study was
conducted with 5 users (3 female and 2 male), ages between 18
and 24. Most participants admitted they played games either
regularly (40%) or every day (40%), with some (60%) enjoy-
ing games with interactive stories and branching narratives.
Out of the 5 participants, 3 stated they had knowledge in game
development, manly working as a Game Programmer and/or
Game Writer.

The participants were asked to perform 10 tasks using the
Story Validator and “The Murder Case” scenario. These tasks
included calculating the total number of paths, finding the
endings’ distribution, studying the story variables’ evolution
in each path, among others. This version only allowed users
to test one story variable at a time.

While the participants completed the tasks, we observed
their performance and took notes. We used the think-aloud
method, where participants used the system while continuously
verbalising their thoughts.

In general, the participants were able to complete the tasks,
but some difficulties were found in the tasks that required
checking the values of variables. For example, two participants
did not complete a task that involved counting the number of
paths that reached an ending with a variable “anger” = 0,
while one was not able to find Passages in which the variable
“anger” had values between -4 and -2.

The participants found the Story Validator tool straightfor-
ward and easy to use, giving it an average score of 83.5 (SD
= 9.45) in the System Usability Scale (SUS). According to a
study made by Bangor, Kortum, and Miller [22], these results
suggest that tool has “passable” overall usability.

In the study, participants also proposed different suggestions
regarding the tools’ usability, for example:

1) Help understanding how the tool works. Some users
noted that the quantity of features was a bit intim-
idating (“[the tool] is very overwhelming at first”).
It was suggested some form of assistance to explain
the tool’s functionality (“Once you start clicking some
checkboxes, you learn pretty quickly how it works [...]
but having a help button or something similar would
have helped a lot.”).

2) Easier to read log report. In cases where multiple
analysis conditions were selected, users had issues while
navigating through the log report box and often had to
keep scrolling up and down to locate what they were
seeking. Participants noted that if the box was larger it
would be easier to navigate.

WP4-D4.1 ivdXR

73

WP4-D4.1

D4.2 — 2nd prototype of SETAs

3) Ability to analyse more than one variable. One of
the users reported the desire to analyse more than one
variable at a time. While this did not hinder their ability
to complete the tasks, their suggestion was noted down.

Based on the feedback gathered, we improved the prototype
and added some new features, including:

« The option to test more than one variable simultaneously.

e A “Toggle Tooltips™ button, which allows the user to
hover different elements on the tool’s menu to display
a short message detailing how each works.

o A “Print Report” button, which creates a full pdf report
of the story analysis that the user can access outside the
tool’s workspace.

o A dotted chart graph, which displays a timeline with the
changes in the values of each story variable select for
analysis throughout the story path selected.

C. User Study 2

For the second user study we used an improved version of
the Story Validator that addressed the usability issues found
in the first study and included a few extra features.

The goal of this study was to test if users were able to use
the Story Validator to identify problems and various design
issues in the interactive story (the “TMC - failed version”),
and suggest possible solutions to the problems they find.

We conducted the test with 20 participants (8 female and
12 male). Except for one participant, all others admitted they
played video games either every day (35%) or regularly (60%).
Nine of the twenty participants said to have some knowledge in
game development (as Game Programmers, Game Designers
or Game Writers). Five of those participants were familiar
with Twine’s authoring tool prior to the test and considered
themselves to have “Intermediate” expertise.

The scenario that participants tested had the following
issues:

« Problem 1: The Path #7 does not reach an Ending.

» Problem 2: The Path #8 does not reach an Ending.

o Problem 3: The Path #14 does not reach an Ending.

« Problem 4: The Passage “Ending 1” is never visited.

« Problem 5: The Passage “Choice 6 is never visited.

All the previous problems can be identified in the Story
Validator under the Analysis Condition “Lost Plot”, which
reveals Passages that can not be visited and Paths that do not
reach an ending, if existent.

EETETT T

LOST PLOT

There is/are 3 path(s) that cannot reach an endxng
PATH #7: ['START', 'Choicel’,
PATH #8: ['START', 'Choice2’,
PATH #14: ['START', Choice2’,

'Evidence', 'Mr. S handkerchief']

“Continue’

"Choices']
There is/are 2 passage(s) that are never visited:

Ending 1
Choice 6

Fig. 7. Analysis Condition “Lost Plot” for the “TMC - failed version”.

V4XR

However, the reasoning behind each of these problems is
unique, and the user needs to make use of the tool in order to
grasp what exactly is causing each of these issues.

For example, problems 1 and 3 have a similar cause: both
reach a Dead-End at the Passage “Choice 5”. Using the Story
Validator, the user will realize that during the story’s creation,
the writer did not add any Links leaving Passage “Choice 5
and, consequently, the play-through stops abruptly there.

the Main Dialog Tree shows that
there are paths stoping at "Choice 5"

Sy

D)

’;.ANQ lh‘m:-\> Choices |
\m‘w,(
M

1 .

select a path
to analyse

the Path Dialog Tree reveals there
are no more Passages after "Choice 5

Fig. 8. Analysing problems 1 and 3.

In general, the participants were able to identify the prob-
lems, except for three who could not identify problem 2. We
believe that the reason for the misidentifying of this problem
was that instead of using the Analysis Condition “Lost Plot”
to identify the issues within the story, they found them by
observing the tree displaying the in tool directly. While this
method is legitimate, none of these 3 participants were able
to identify and solve problem 2.

Additionally, two users (10%) could not find a solution for
problems 1 and 3. In turn, problem 5 seemed to be the one that
was harder to solve for at least five of the participants (25%).
For all the other problems, the completion rate is 100%.

According to the average participant, the task of identifying
the problems within the narrative was considered relatively
easier than trying to propose a solution. The results also show
the time it took users to identify all the problems was 52.3 sec.
(SD = 22.66), while proposing a solution took, on average,
146.2 sec. (SD = 31.84). Overall, the time values for both
finding and solving problems prove that the tool is efficient and
that, with a bit of experience with the tool, users can quickly
use the tool to pinpoint and repair errors in their interactive
stories.

In the end, participants gave the Story Validator tool an
average SUS score of 92.4 (SD = 4.76). These results suggest
that our system is considered a “truly superior product” [22].

D. Additional results

Before each experiment, we asked the participants, together
with the demographics questionnaire, their preferred tool to
write stories for games, and what problems they usually face
in the task.

ivdXR

74

WP4-D4.1

D4.2 — 2nd prototype of SETAs

The most preferred authoring tool to write stories for games
was a basic word processing tool (76%), such as Microsoft
Word, Google Docs or LibreOffice Writer, but some had
experience using Twine (24%). The users also reported the
following problems when using their preferred authoring tool
for writing IN:

« Difficulty keeping track of game variables and/or objects;

« Difficulty identifying “Dead-Ends”, meaning moments in

the game that prevent the player from continuing playing;

Difficulty keeping track plot moments in the game that

the player skips unintentionally, losing the plot coherence;

o The lack of ability to keep track of user experience
(before playtesting).

These findings are aligned with the metrics we propose in
section [V]

VII. CONCLUSION

In this paper, we have underlined some of the current chal-
lenges concerning the authoring process of IN. We addressed
the lack of tools that provided ways for the authors to test
their narrative while considering the player’s agency, during
the game’s developmental stage, without requiring playtesting.
More often than not, these works opt for online Al approaches
that, during gameplay, dynamically adapt the narrative and
resolve conflicts created by unintended player’s actions. This
might lead to situations where the system takes control of the
story, replacing human authorship.

With this work, we set ourselves to develop a tool for
testing interactive dialogues for video games. With such tool,
we believe that authors gain some control that enables them
to define more complex narratives to express their artistic
intentions without feeling constrained. This approach has been
designed to facilitate the development of IN in stages before
human playtesting by letting the author explicitly test different
hypotheses and narrative properties to identify possible design
mistakes. The tool’s GUI allows for a clearer picture of the
IN authoring process, by providing a visual representation
of the narrative structure through the use of tree structures,
that run through different test conditions. The two studies
we conducted show some good sign for the approach and
tool proposed. As several participants confirmed (“I would
definitely use this tool to test my stories”, “[the tool] really
helps give the designer an idea of how their narrative works”,
“using [the tool] would save game developers so much time”)
the tool proves to be an essential asset for the creation of IN.

Overall, we believe that, as a first approach to this type
of systems, our prototype managed to achieve the proposed
objectives.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance and support pro-
vided by the colleagues of project iv4XR at INESC-ID. We
would also like to thank all those who participated in the user
studies; their feedback was extremely helpful.

2

[3]

[4

[5]
[6]

[7

(8

)

[10]

[11]

[12]

&

[14]

[15]

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

ivdXR

V4XR

REFERENCES

E. Aarseth, “A narrative theory of games.” in Proceedings of the
international conference on the foundations of digital Games, 2012, pp.
129-133.

H. Qin, P-L. Patrick Rau, and G. Salvendy, “Measuring player immer-
sion in the computer game narrative,” Intl. Journal of Human— Computer
Interaction, vol. 25, no. 2, pp. 107-133, 2009.

M. O. Riedl and V. Bulitko, “Interactive narrative: An intelligent systems
approach,” Ai Magazine, vol. 34, no. 1, pp. 67-67, 2013.

S. Dinehart, “Dramatic play,” 2009, online; Retrived 5-November-
2020. [Online]. Available: hitp://www.gamasutra.com/view/feature/,
4061/dramaticplay.php

B. Books, Choose Your Own Adventure Book Series. Bantam Books:
NYC, 1979 - 1998.

M. Mateas, “The authoring challenge in interactive storytelling,” in Joint
International Conference on Interactive Digital Storytelling. Springer,
2010

P. Mirza-Babaei, N. Moosajee, and B. Drenikow, “Playtesting for indie
studios,” in Proceedings of the 20th International Academic Mindtrek
Conference, 2016, pp. 366-374.

P. Mirza-Babaei, V. Zammitto, J. Niesenhaus, M. Sangin, and L. Nacke,
“Games user research: practice, methods, and applications,” in CHI’13
Extended Abstracts on Human Factors in Computing Systems, 2013, pp.
3219-3222.

N. Moosajee and P. Mirza-Babaei, “Games user research (gur) for indie
studios,” in Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, 2016, pp. 3159- 3165.

J. Bates, “Virtual reality, art, and entertainment,” Presence: Teleoperators
and Virtual Environments, vol. 1, no. 1, pp. 133-138, 1992.

C. Klimas, “Twine - an open-source tool for telling interactive, nonlinear
stories,” 2020, online; Retrived 5-January-2020. [Online]. Available:
https://twinery.org/

T. Rothamel, “The ren’py visual novel engine,” 2020, online; Retrieved
16-November-2020. [Online]. Available: https://www.renpy.org/

M. O. Riedl, “Incorporating authorial intent into generative narrative sys-
tems.” in AAAI Spring Symposium: Intelligent Narrative Technologies
II, 2009, pp. 91-94.

R. Aylett, “Emergent narrative, social immersion and “storification™,”
in Proceedings of the lst International Workshop on Narrative and
Interactive Learning Environments, 2000, pp. 35-44.

E. Adams, Fundamentals of game design. Pearson Education, 2014, pp.
172-173.

S. Dow, B. Maclntyre, and M. Mateas, “Styles of play in immersive and
interactive story: case studies from a gallery installation of ar facade,”
in Proceedings of the 2008 International Conference on Advances in
Computer Entertainment Technology, 2008, pp. 373-380

J. Bates, “Virtual reality, art, and entertainment,” Presence: Teleoperators
and Virtual Environments, vol. 1, no. 1, pp. 133-138, 1992.

Mateas, Michael, and Andrew Stern. “Fagade: An experiment in building
a fully-realized interactive drama.” Game developers conference. Vol. 2.
2003.

M. O. Riedl and A. Stern, “Believable agents and intelligent story
adaptation for interactive storytelling,” in International Conference on
Technologies for Interactive Digital Storytelling and Entertainment.
Springer, 2006, pp. 1-12.

M. Bemnstein, “Collage, composites, construction,” in Proceedings of
the fourteenth ACM conference on Hypertext and hypermedia, 2003,
pp. 122-123.

S. Mascarenhas, M. Guimardes, R. Prada, J. Dias, P. A. Santos, K.
Star, B. Hirsh, E. Spice, and R. Kommeren, “A virtual agent toolkit for
serious games developers,” in 2018 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, 2018, pp. 1-7.

A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the
system usability scale,” Intl. Journal of Human—Computer Interaction,
vol. 24, no. 6, pp. 574-594, 2008.

Stahlke, Samantha, Atiya Nova, and Pejman Mirza-Babaei. “Artificial
Players in the Design Process: Developing an Automated Testing Tool
for Game Level and World Design.” Proceedings of the Annual Sym-
posium on Computer-Human Interaction in Play. 2020.

75

