

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D4.1 – 1st prototype of SETAs

iv4XR – WP4 – D4.1

Version 1.5

December 2020

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR i

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2020

Actual Date 30/12/2020

Document Author/s Manuel Lopes, Marta Couto, Pedro Fernandes, Carlos Martinho,
Rui Prada (INESC-ID), Ian Saunter (GW), Davide Prandi (FBK)

Version 1..5

Dissemination level Public

Status Final

This project has received funding from the European Union’s Horizon 2020
Research and innovation programme under grant agreement No 856716

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR ii

Document Version Control

Version Date Change Made (and if appropriate reason
for change)

Initials of
Commentator(s) or

Author(s)

1.0 03/12/2020 Initial document structure and contents ML

1.1 10/12/2020 Added details about the appraisal model for UX
assessment PF

1.2 11/12/2020 Improvements to the document’s structure and
introduction RP, MC

1.3 14/12/2020 Added details about the cognitive load MC, CM

1.4 21/12/2020 Improvements in the document structure RP

1.5 30/12/2020 Final arrangements before submission RP, MC

Document Authors and Quality Assurance Checks

Author
Initials

Name of Author Institution

ML Manuel Lopes INESC-ID

MC Marta Couto INESC-ID

PF Pedro Fernandes INESC-ID

CM Carlos Martinho INESC-ID

RP Rui Prada INESC-ID

DP Davide Prandi FBK

IS Ian Saunter GWE

Document Quality Control

Version
QA

Date Comments (and if appropriate reason for
change)

Initials of QA Person

1.3 16/12/2020 Document review DP

1.3 18/12/2020 Document review IS

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR iii

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 1

2. INTRODUCTION 2

3. SOFTWARE INCLUDED IN THIS DELIVERABLE 3

3.1 APPRAISAL MODEL FOR UX ASSESSMENT 3

3.2 DIFFICULTY ESTIMATION 4

3.3 AUTOMATED COGNITIVE-LOAD ESTIMATION 5

3.4 VERIFICATION OF INTERACTION PROPERTIES 7

4. CONCLUSIONS AND FUTURE WORK 8

ANNEXES 9

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 1

1. EXECUTIVE SUMMARY

This document is a software deliverable. We provide an overview of the state of the work on WP4,

software links, and its description. We annexed papers and reports that describe in more detail

the development and results of the software.

Acronyms and Abbreviations

SETA Socio-Emotional Test Agent

SUT System Under Test

XR Extended Reality

UX User Experience

RL Reinforcement Learning

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 2

2. INTRODUCTION

Work Package 4 focuses on developing socio-emotional test agents (SETAs) to aid the

systematic assessment of user experience (UX) of extended reality (XR) systems. The SETA’s

will use well-established emotion appraisal theories and models to assess the emotional state;

they will cover social variability to simulate a wide range of users; and use a progression model

allowing it to appraise UX-relevant user states over time.

To achieve these goals we need to build several components including, understanding of the

social and emotional experience of a user, creating profiles of the social properties of different

types of users, studying the impact of the different scenarios/interactions in different types of

people, and then using such profiles to test software automatically.

We are developing methods for the automatic creation of typical profiles from user interaction.

These profiles can then be employed either for personalisation of the interaction or to be able to

generate automatic tests that are more representative of the different profiles of users.

During the first period of the project, two tasks are active. Task 4.1 SETA Design and

Development and Task 4.2 Socio Components. Task 4.5 has just begun, however, we do already

have some processes regarding the integration with the Framework.

One of WP4 primary outcomes is the SETA Design and Development, which aims to develop the

core Socio-Emotional Test Agents. Work on this task is on track, and we have integrated

prototypal SETAs with the iv4XR Framework. Originally, the SETAs were to be based on the

FAtiMA Toolkit to make use of its cognitive model of emotions. However, we are first exploring

the use of simpler dimensional theories of emotion, such as the PAD and the Core Affect Model.

We felt the need to complement the FAtiMA toolkit with dimensional emotional models since the

OCC model (Clore & Ortony, 2013), on which the FAtiMA toolkit is based, requires a considerable

understanding of the relations between agents and objects. This understanding might not always

be available to the agent, depending on the system under test (SUT). Dimensional emotional

models can more easily be used to work without such understanding, and their continuous nature

is well suited for modelling the evolution of emotional states through time and location.

In this period the work was divided into three main components:

● study and development of models of user experience and social components of interaction

● study and development of models of difficulty estimation of scenarios

● study and development methods for modelling user profiles

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 3

3. SOFTWARE INCLUDED IN THIS DELIVERABLE

3.1 APPRAISAL MODEL FOR UX ASSESSMENT

To understand and develop an appraisal model we carried out a systematic survey of user

experience evaluation [2] and informed with such research we created our first prototype

described in [3] with the code in [1] integrated with the currently developed Framework and the

main Lab Recruits demo (developed as a first testbed for the iv4XR Framework). In its current

version, the software uses a rule-based approach to model the two dimensions of the Core Affect

of an agent that traverses a level/scenario. This approach allows designers and testers to have

an estimation of UX through time and position of a scenario, allowing them to pinpoint troublesome

areas that require improvements. Currently, we are integrating bio-sensors to be able to measure

physiological parameters during an interaction, allowing us to improve and validate this approach.

Figure 1 shows a maze in lab recruits and we see in Fig.1a) the locations where the affect was

higher and in Fig.2b) the evolution of arousal/pleasure during the trajectory.

Figure 1: (Top) Estimation of affect variables (Arousal and Pleasure), (Bottom) Level.

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 4

Links and References
Source code: [1] https://github.com/iv4xr-project/userexperienceeval

Video: https://www.youtube.com/watch?v=UOdwZX2h11o&t=12s

Expected Publications:

[2] Fernandes, P., Ansari, S. G., Prasetya,I. S. W. B., Lopes, M., Martinho, C., Dignum, F.,

Prada, R. (2021) Automated UX Testing: A Call for Research. Manuscript in preparation. Annex

A1.

[3] Fernandes, P., Lopes, M, Prada, R. (2021) Agents for Automatic User Experience Testing.

Manuscript in preparation. Annex A2.

3.2 DIFFICULTY ESTIMATION

The difficulty of a level, and more importantly, the progression of difficulty of a series of levels,

can have a significant impact on the user experience and learnability of a game. We are

developing methods to rank a series of levels in terms of the difficulty. As an example Figure 2

shows a character (rectangle) that needs to jump over an obstacle, the length of the obstacle and

the difference in height will make this obstacle more or less difficult. Preliminary results can be

seen in [4] (software available at [5]) and show that difficulty can be estimated in many cases.

This is currently being tested and developed in a platform game.

Figure 2: Levels used for testing the estimation of difficulty. Length and difference in heights will make an

obstacle more difficult. We aim at automatically order the levels in terms of difficulty.

https://github.com/iv4xr-project/userexperienceeval
https://www.youtube.com/watch?v=UOdwZX2h11o&t=12s

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 5

Links and References

Source code: [5] https://github.com/iv4xr-project/difficultysch

Expected Publications:
[4] Miguel Reis, Manuel Lopes, Rui Prada, Automatic Evaluation and Ordering of Level Difficulty

in Games. Manuscript in preparation.

3.3 AUTOMATED COGNITIVE-LOAD ESTIMATION

A significant part of XR user experience results from the interaction of each user with the system

while solving a task in the environment. During interaction with an XR system, each user has

different exchanges while navigating through the design space of the system, which will create

distinct user experiences (UX). Aside from the emotions and social motivations, cognitive abilities

also impact appraisal, and, indirectly, how the user navigates the space. Being able to understand

how the interactions are a reflection of these dimensions of the experience would help designing

more personalised systems, resulting in better UX.

This work focuses on Cognitive Load, meaning the amount of information a person is

conscientiously processing at a given moment. The cognitive load has a close relationship with

attention mechanisms. We aim to create a toolset in the context of automatic play-testing that we

can extend to other types of systems. The toolset, based on the TBRS (Time-Based Resource

Sharing) [6] memory model, aims at providing a measure of the cognitive load (a percentage) that

the user is expected to experience while going through a particular task in a specific context.

Autonomous agents navigating and exploring a virtual environment need some parameterisation

of what grabs the agents’ attention (e.g., interacting with an object or dodging enemies’ attacks).

We call these “attention-grabbing events”, measured in seconds (duration of the event). The

toolset will provide a set of methods (API) that need to be added/called from the code of the

software undergoing testing, each time an attention-grabbing event occurs.

After finalising a task, the toolset will compute an estimate for the cognitive load experienced by

the user, based on the sum of the attention-grabbing events, and the total duration of the task.

We can integrate this value into automated testing procedures by using assertions in the code

that check whether the estimated value of the cognitive load is within a specific desired range. If

not, the toolset will be able to present a short report to identify possible problems with the current

https://github.com/iv4xr-project/difficultysch

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 6

implementation (based on the data gathered) and shed some light on the direction to take in future

development.

To test and evaluate our model, we created the game “Way-out” (Figure 3), in which the player is

escaping from a small underground complex. We designed the game to allow for the

parameterisation and control of several attention-grabbing events, and the manipulation of several

dimensions of the experience, such as the time required to navigate through the game, the

complexity of the task based on the number of interactions required to overcome them, as well

as the number of items a player needs to keep in mind to solve the different puzzles. By comparing

the reported cognitive load of the participants to the value computed by the TBRS theoretical

model, we aim at evaluating whether this model is an appropriate predictor of the cognitive load

reported by the players for the whole experience.

Figure 3: The ‘Way out’ game

Links and References
References:

[6] Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working

memory. The cognitive neuroscience of working memory, 455, 59-80.

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 7

Project Github:

https://github.com/albertoramos1997/WayOut

Video(s):

Vídeo Way Out (Lever Puzzle): The video shows the four versions of the "lever puzzle". In this

puzzle, the player needs to collect the missing levers, add them to a machine, and activate the

correct levers to open the door to the next room. The video also shows the inventory (backpack)

and the notebook, where players can store hints about the different puzzles.

https://www.youtube.com/watch?v=6LSi81yiB28&t=18s&ab_channel=AlbertoRamos

Vídeo Way Out (Orb Puzzle): The video shows the four versions of the “orb puzzle”, which is the

final puzzle of the game. Throughout the rooms, the player finds different orbs in stands. Each

orb has a different colour and each stand has a symbol. The player has four stands with symbols

on the final room, and they need to match the symbols to the colours. Once all orbs are in the

correct stand, the player needs to activate the buttons (by pressing the symbols) in a predefined

order to win the game.

https://www.youtube.com/watch?v=8ge565wPE9I&t=21s&ab_channel=AlbertoRamos

Expected Publications:
[7] Ramos, A., Couto, M., Martinho, C. (2020). Assessing Players’ Cognitive Load in Games.

Manuscript in preparation. Annex A3

3.4 VERIFICATION OF INTERACTION PROPERTIES

When a designer creates a level, there is an intention to produce specific properties. For instance,

a game for training teams must verify that each scenario enables and allows teamwork. We

developed the first version of a methodology to verify properties of scenarios that can be

described based on desired behaviours or example behaviours. The approach uses machine

learning to learn the best behaviour of a set of agents automatically and then compare the

estimated policy with a set of baseline policies to decide which of the baseline policies the agents

are using. The baseline policies define the design goals of the system under test.

We focused on determining if a scenario promotes cooperation [7] and plan to consider other

types of properties [8]. We are conducting a user study to verify the simulation results.

https://github.com/albertoramos1997/WayOut
https://www.youtube.com/watch?v=6LSi81yiB28&t=18s&ab_channel=AlbertoRamos
https://www.youtube.com/watch?v=8ge565wPE9I&t=21s&ab_channel=AlbertoRamos

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 8

Figure 4: Evaluation of how a level enables collaboration between agents.

Links and references

Project Github:

https://github.com/carreirabruno/Tese_iv4XR_Pessoal

Expected publications
[7] Bruno Carreira, Manuel Lopes, Rui Prada Collaboration analysis in a multi-player based

simulation. Manuscript in preparation. Annex A4.

[8] Luis Fernandes, Manuel Lopes, Learning User Profiles for Automatic Test of Games.

Manuscript in preparation.

4. CONCLUSIONS AND FUTURE WORK

In this period we developed several methods to measure and evaluate various aspect of the

experience of the user during gameplay. We considered cognitive workload and affect/arousal.

Even before gameplay we developed methods to validate a set of scenarios in terms of gameplay

properties such as capability to play as a team, learnability and difficulty.

For the second period of the project we plan to integrate all the components developed so far into

the main Framework of the project. We will expand the specification of emotional experience and

its automatic verification on more complex scenarios.

https://github.com/carreirabruno/Tese_iv4XR_Pessoal

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR 9

ANNEXES

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR

ANNEX A1

Automated UX Testing: A Call for Research

PEDRO M. FERNANDES∗, INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal

SABA GHOLIZADEH ANSARI∗, Utrecht University, Netherlands
I. S. W. B. PRASETYA, Utrecht University, Netherlands
MANUEL LOPES, INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal

CARLOS MARTINHO, INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal

FRANK DIGNUM, Umea University, Sweden

RUI PRADA, INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal

User eXperience (UX) is highly important in any application that interacts directly with the end user and merits being an integral part
of the iterative development process. Functional testing has been highly automated and GUI testing is taking steps on that direction, yet
UX testing is largely dependent on user based testing. This leads to �nancial and time constraints that turn UX testing into a bottleneck,
forcing developers to mostly exclude UX concerns from frequent test runs. Thus, we believe it would be greatly bene�cial to automate
UX testing. In this paper we begin by presenting a systematic review on automated UX testing based on agents and a�ective/cognitive
models, �nding no works that satisfy our inclusion criteria. Considering that this represents a research gap, we further conduct a
scoping review and present 6 areas of research that could serve as the foundation for the development of a�ective/cognitive testing
agents.

CCS Concepts: • Human-centered computing ! Human computer interaction (HCI); User models; • General and reference
! Surveys and overviews; • Computing methodologies! Arti�cial intelligence.

Additional Key Words and Phrases: user experience, automation, software testing, automated testing, a�ective agents

ACM Reference Format:
Pedro M. Fernandes, Saba Gholizadeh Ansari, I. S. W. B. Prasetya, Manuel Lopes, Carlos Martinho, Frank Dignum, and Rui Prada. 2020.
Automated UX Testing: A Call for Research. 1, 1 (December 2020), 16 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

User eXperience (UX) is a hard to de�ne concept. A survey approach to the problem of user experience [42], asking 275
researchers and practitioners from academia and industry which de�nition of UX they most agreed with, found the most
agreed upon de�nition to be: "A consequence of a user’s internal state (predispositions, expectations, needs, motivation,
∗Both authors contributed equally to this research.

Authors’ addresses: Pedro M. Fernandes, pedro.miguel.rocha.fernandes@ist.utl.com, INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal,
Lisboa; Saba Gholizadeh Ansari, s.gholizadehansari@uu.nl, Utrecht University, Netherlands; I. S. W. B. Prasetya, Utrecht University, Netherlands; Manuel
Lopes, INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal, Lisboa; Carlos Martinho, INESC-ID and Instituto Superior Técnico, Univ. de
Lisboa, Portugal, Lisboa; Frank Dignum, Umea University, Sweden; Rui Prada, INESC-ID and Instituto Superior Técnico, Univ. de Lisboa, Portugal, Lisboa,
rui.prada@tecnico.ulisboa.pt.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456

2 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

mood, etc.) the characteristics of the designed system (e.g. complexity, purpose, usability, functionality, etc.) and the
context (or the environment) within which the interaction occurs (e.g. organisational/social setting, meaningfulness
of the activity, voluntariness of use, etc.) [25]". In most situations, system designers have no control over the user’s
internal state prior the interaction with the system nor the context (environment) in which the system is used. As
such, for the purpose of this work, when we mention UX we are referring to the consequences the characteristics of a
system have on the internal state of a user. This is in accordance with the ISO 9241-210:2019 de�nition of UX: "user’s
perceptions and responses that result from the use and/or anticipated use of a system, product or service." [15]. The �rst
note to that de�nition clari�es that "Users’ perceptions and responses include the users’ emotions, beliefs, preferences,
perceptions, comfort, behaviours, and accomplishments that occur before, during and after use.".

User questionnaires, and more broadly user testing, are commonly used when evaluating UX [1, 66]. When done
properly, these methods can provide numerous insights to developers and designers and be a fundamental part of the
iterative cycle of product development. Unfortunately, they also prove to be a bottleneck. User testing is a relatively
slow endeavour in a world of sprint runs and agile development. Advances in automatic software testing have allowed
the functional testing of software to rely less on user testing and more on software tools, accomplishing in minutes
what previously took days. UX testing lags behind and so is left behind. The �nancial and temporal costs inherent to
current UX testing methods force many companies and developers to ignore UX concerns, which is neither bene�cial
for the companies nor the end user.

We, therefore, argue that there is a strong need to add automation to UX testing. By this we do not mean that testing
methods that rely on users (user testing) should be completely discarded. Developers should, however, be empowered
with tools that allow them to quickly estimate certain dimensions of UX, allowing for quick iterative development cycles
that also take UX into consideration. For example, in game development, if a new version of the software inadvertently
makes a key action become much more complex and cumbersome, makes a location harder to reach or makes the game
more repetitive, the developer should be alerted of a negative UX e�ect when doing routine testing.

To automatically assess how certain environments a�ect UX, we can employ an internal model of users. This can be
done by arti�cially emulating a user or using narrower models that focus on a single interaction metric. The autonomous
and self-motivated behaviour of arti�cial agents make them strong contenders for automated UX experience testing.
The �eld of Arti�cial Intelligence (AI) is constantly evolving. We are able to program agents which are capable of
accomplishing increasingly complex tasks, some of which were believed to be impossible a few decades ago [5]. Other
areas of computer science have also taken large leaps forward. How have such advances impacted UX testing? We
now have agents that are able to drive cars in complex and unpredictable environments. Using these technological
improvements, can we have agents that interact with a system and give us an estimate of UX measures? Can we
apply a�ective and cognitive models, developed in the area of psychology, to estimate the expected emotional states or
cognitive load of users?

This paper was motivated by these questions. Our �rst step was to understand if any attempts had been made to use
agents and a�ective/cognitive models to estimate UX. To do so, we conducted a systematic review (Sec. 4.1). Throughout
this review, we were unable to �nd any publications that met our inclusion criteria (Tab. 1). As far as we could �nd, there
have been no attempts to implement arti�cial users or a�ective/cognitive models in order to automatically estimate UX
measures.

We believe agent based UX testing to be a very promising �eld that can greatly improve software development,
especially in interactive applications areas, such as gaming, simulation and extended reality. As such, we decided to
further conduct a scoping review [55] in order to �nd which current areas of research are most aligned with the objective
Manuscript submitted to ACM

Automated UX Testing: A Call for Research 3

of creating automated methods for UX testing. By doing so, we strive to collect and present a strong foundation that
can be used for future research and development in the area of automated UX testing.

This paper is organized as follows. In Sec. 2 we give a brief overview of previous surveys on the area of UX research.
In Sec. 3 we provide an overview of non-automated UX testing and give a short description of the a�ective and cognitive
models that will be mentioned further in the paper. In Sec. 4 we describe the methodology used to conduct our review
process. In Sec. 5 we present the �ndings of our review, enumerating 6 relevant areas of research and providing short
descriptions for a number of relevant publications. Finally, in Sec. 6 we summarize the state of the art, discuss the
results and present our position regarding future research in the area.

2 PREVIOUS SURVEYS

Previous surveys have provided an overview of the current state of the art of UX research, although we found none
that focused on automated methods exclusively. Vermeeren et al. [66] identi�ed 96 UX evaluation methods until 2010,
characterized according to, among others, type of collected data, information source, evaluated type of application,
location (lab or �eld), and type of the method used. Because psycho-physiological data may not be enough for UX
evaluation, methods that use these data together with other types of data such as users’ comments are also included
in the survey. About one-third of these investigated methods used quantitative data, one-third qualitative data and
one-third both. The study indicates that although one-third of all methods (37 methods) could be used in the early
development phases, there is still a demand for more e�ective early stage UX evaluation methods, multi-method
approaches, improving the validity of measured-based methods and establishing practicability and scienti�c quality.

Later, Rivero and Conte [57] continue the work on UX methods by performing a systematic mapping study on
technologies developed between 2010 and 2015. It interestingly points out the need for gathering UX data of application
usage at di�erent time stamps, while considering speci�c features or types of applications. Assessing UX before, during
and after episodic experience of the user provides richer information on the aspects that a�ect their experience, helping
developers identify user requirements. The users or the development team, however, may not have available time to
carry out a long period evaluation.

Alves et al. [1] conducted an online survey in which participants were asked about the UX evaluation techniques
they use, UX evaluation characterization, and impacts on di�erent level of software engineering and �eld of their
expertise. The survey demonstrates that informal, low cost methods, such as observation, think aloud, contextual
inquiry, interview and experience prototyping are widely used. Methods that involve high cost and technological
challenges such as eye-tracking are rarely applied to UX evaluation by the participants. This study also illustrates that
only in 50% of cases, end-users are always involved in evaluating UX. However,in the remaining half, subjects are
designers, software engineers and directors. This implies that end-users are not elaborated enough on UX assessment.
Alves et al. highlight that the way the end-users perceive the products and interact with software is more important
than the actual usability of the software.

Considerable research has been performed in order to study attitudes toward UX measurement. Law [41] argues that
UX researchers and practitioners may roughly be divided into two camps: the “design-based UX camp” that focuses
more on qualitative approaches, and the “model-based camp” with a focus on quantitative approaches. Employing
quantitative measures with complete exclusion of qualitative accounts of user experiences may result, however, in
wrong implications. To enhance the acceptance of UX measures, UX modelling should, therefore, be grounded in
psychological theories to link experiential qualities with outcomes, such as UX theoretical frameworks investigating
the relationship between a�ect, action, and cognition[43].

Manuscript submitted to ACM

4 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

Given the current lack of surveys on automated UX testing, we believe a survey on automated UX testing could pave
the way for future research, being a valuable source of information and inspiration, in an area we argue requires more
research.

3 BACKGROUND

Under the UX umbrella, various types of experiential qualities such as �ow, immersion, long-term engagement, learning
and usability can be measured. To measure these factors, methods like self-reporting, physiological responses, user
modeling and objective assessment techniques have been used used.

We begin this section by giving a quick overview of what non-automated approaches are commonly used for UX
testing. We then brie�y describe the a�ective/cognitive model theories that will be relevant to understand some of the
UX testing methods that will be mentioned further ahead in the paper.

3.1 Non-automated UX testing

Classically, UX testing is mostly done manually, employing user testing (testing done with real users) and self-reporting
techniques. Examples of these non-automated self-reporting methods are 3E [64], MAX[9], Feeltrace[12], and UX
Curve[38].

The 3E (Expressing Experiences and Emotions) [64] method is used during �eld studies to collect information about
users’ experiences and emotions in a semi-structured way. Users follow a template where they draw and write their
experiences and emotions regarding their interaction with the evaluated application during the �eld study.

MAX [9] is a post-use method that uses a set of cards and a board for evaluating the general experience. MAX can be
applied after the use of mock-ups, prototypes, interactive systems, or any artifact that user can interact with. The MAX
cards allow evaluating UX in terms of four categories: emotion, ease of use, usefulness and intention to use, which are
represented on the board by questions that guide the user at the evaluation. After experimenting with the evaluated
artifact, the user selects cards and then places them on the board. Each card contains a human cartoon to portray
the emotional reaction of users to the system. In the end, the evaluator analyzes the cards selection and conducts an
interview to gather further information regarding the reason of choices.

Another approach to assess UX based on self-reporting is to observe the emotional dynamism over speech with
support tools such as Feeltrace [12]. This tool records the perceived emotional content of speech. The software tool is
designed to collect self-reports from observers watching the stimulus to be evaluated by allowing users to continuously
label the change of a�ective expressions.

Unlike other methods evaluating UX in a short period of time, UX Curve method [38] was proposed to facilitate the
assessment of UX changes over time. The UX Curve method aims at assisting users in retrospectively reporting how and
why their experience with a product has changed over time. In particular, it investigates how speci�c memories of user
experiences with mobile phones guide their behavior and their willingness to recommend the product to others. The
participant draws one or more curves to describe how the experience about a product has changed over time. The curve
drawing area is formed by a timeline and a horizontal line that divides positive and negative experiences. Additional
horizontal and vertical lines can be used as more precise scales for the quality of experience and for time periods. Users
are also asked to �ll in a questionnaire giving the overall evaluation of the phone as well as willingness to recommend
the phone model to a friend. According to statistic analysis, satis�ed users draw an improving trend in UX curve and
they report a higher likelihood of recommending the products. While UX Curve is a pen-and-paper method, there is a
sketching tool called iScale [32] which follows the same technique to reconstruct longitudinal users experience data.
Manuscript submitted to ACM

Automated UX Testing: A Call for Research 5

3.2 Cognitive Models

As cognitive models will be the foundation of a number of a number of works we will later discuss, in this section we
shortly present the basis of cognitive modelling and give an overview of the speci�c approaches that will be used in
works presented in Sec. 5.

Emotional experiences and their connections to other components of UX have been investigated over the years using
physiological sensing to evaluate user experience including emotional reactions, stress levels, cognitive performance,
and user engagement. For example, Mahlke and Thüring [46] proposed a method which integrates major components of
user experience and their possible interrelations to investigate the in�uence of instrumental as well as non-instrumental
qualities on emotional reactions, employing a combination of physiological methods, questionnaires and behavioral
data. While instrumental qualities focus on the amount of support the system provides, such as the controllability of
system behavior and the e�ectiveness of its functionality, non-instrumental qualities concern the look and feel of the
system, such as, visual aesthetics or haptic feel. The results indicated that instrumental and non-instrumental qualities
in�uence emotional reactions with respect to subjective feelings, facial expressions and physiological responses.

Bargas-Avila and Hornbæk [3] described eight dimensions for user experience assessment in a review on empirical
studies of UX. Among them, emotions, enjoyment and aesthetics are the most frequently assessed UX dimensions. To
con�rm the impact of emotion on UX, Saariluoma has conducted several research on conceptualizing the emotional
dimension of UX in psychological terms. In [59], Saariluoma and Jokine investigated the psychology of user experience
based on an emotional theory to study which emotional dimensions are most relevant for user experience and should be
addressed in UX testing. The essential role of emotion, however, is so far neglected in automated UX testing frameworks.

In addition to physiological approaches, it is possible to address the emotional dimension in UX testing by providing
an emotional model to recognize and understand emotions. Emotional models can be formulated through compu-
tational cognitive modeling. Computational cognitive models de�ne the essence of cognition and various human
cognitive functions, such as perception and emotion, by representing them in computational models of mechanisms
and processes[63].

Among various cognitive models, only two types, according to our review, have been used in assessing user experience:
’emotional models’ and ’human processing models’. While emotional models are used to assist the assessment of the
emotional dimensional user experience, Human Processing Models evaluate the usability in the early steps of the
development process by estimating the cognitive burden needed to execute tasks on an interface. Both these cognitive
models are going to be explained in the subsections below. Later on, we will present the current use of these models
in UX testing (Sec. 5) and discuss that user emotion modeling has the potential to be used in automated UX testing,
opening avenues for further research (Sec. 6).

3.2.1 Emotional Models. The causal analysis between cognition and emotion supports the theory that emotional
reactions depend on cognitive appraisal. There have been various theories that have examined the appraisal criteria
leading to emotions and the cognitive functions involved. Appraisal theory [44] suggests that before the occurrence of
emotions, there are certain cognitive processes that analyze stimuli. Appraisal theories argue that appraisal process
refers to the subjective perception, interpretation and evaluation of an event which results in emotions. This, then,
guides the coping process to give appropriate responses based on subject’s coping strategies. For instance, a human
might "feel" distress regarding a speci�c event (appraisal). This leads to a shift of blame (coping), which results in anger
(re-appraisal). Needless to say, people respond to events di�erently depending on how they are appraised. Computational
models of emotion can ease further research on systems that try to model or in�uence human behavior [22].

Manuscript submitted to ACM

6 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

A popular appraisal-based emotional model is the OCC model by Ortony, Clore and Collins [54]. This model
proposed a hierarchy that classi�es 22 type of emotions. At the most abstract level, OCC model considers every emotion
as a valenced reaction, which can either be positive or negative. These emotions emerge as a consequences of events
(e.g., joy and pity), actions of agents (e.g., pride and reproach), and aspects of objects (e.g., love and hate). This model is
commonly used in developing emotional agents and user modeling, making the OCC model a good candidate to model
emotional dimensions of user experience.

3.2.2 Human Processing Models. Several cognitive models have been used to evaluate usability by estimating the
cognitive processes needed to execute tasks on an interface. The most commonly used methods are the Model Human
Processor (MHP), the Goals, Operators, Methods, and Selection rules (GOMS), and the Key-stroke Level Model (KLM),
which are all related and were proposed by Card, Moran, and Newell [8]. MHP is used to estimate the time for performing
a speci�c task. It is de�ned by a set of speci�cations and principles of operation over models consisting of several
types of interconnected processors (perceptual, cognitive, and motor) and memory systems (visual and auditory image
storage, working memory, and long-term memory).

MHP formed the basis for developing GOMS (Goals, Operators, Methods, and Selection rules) family. GOMS were
�rst proposed to describe human information processing in terms of basic perceptual, cognitive, and motor abilities.
Like MHP, the family of GOMS models aim at predicting the execution time of perceptual-motor processing tasks by
summing the time requirement of an operator sequence for completing a task with a system at hand. GOMS models
could be used to predict some aspects of usability, such as, consistency and e�ciency of designed interactive web
forms and may e�ectively complement user testing in early design stages, reducing the amount of testing that may be
necessary for usability evaluation as well as development costs [34].

The simplest and most frequently used GOMS technique is the Key-stroke level model (KLM) which predicts the
time that will take for a skilled user to execute routine tasks with a User Interface (UI). KLM contains six operators
which are: key-stroking; pointing with a mouse to a target; homing the hand at a keyboard; drawing a line segment on
the grid; mentally preparing for executing actions; and the response time of the system. Other major GOMS techniques
(CMN-GOMS, NGOMSL, and CPM-GOMS) require extensive training and familiarity with Human-Computer Interaction
principles to perform an analysis [34].

4 REVIEWMETHODOLOGY

4.1 Systematic Review

We began our review process by doing a systematic review, following the existent guidelines for systematic reviews in
software engineering [36]. A systematic review is motivated by a precise research question, follows a de�ned search
algorithm, examines all documents found by the search algorithm and has explicit criteria of paper inclusion/exclusion.
This allows the review process to be thorough and as replicable as current search engines allow.

The �rst step of our systematic review was to de�ne a concrete research question. We aimed to �nd research that
automatically estimated UX without relying on user testing. During preliminary searches, we became aware that
physiological and behavioural approaches often described their work as "automated UX testing" despite heavily relying
on user testing. Such works were not our main focus, so we decided to narrow our research to approaches that modelled
the ways users think and feel to avoid works that rely on real users during testing. With these details in mind, we
de�ned the following research question: "What is the state of the art of automatic user experience testing using a�ective
or cognitive models?".
Manuscript submitted to ACM

Automated UX Testing: A Call for Research 7

Having de�ned our research question, the second step of our systematic review was to de�ne a search algorithm to
�nd relevant publications. Our aim was to de�ne a research string, that is, a string of keywords and operators that could
be used as a query in search engines. To do so, we began by doing preliminary searches looking for previous reviews.
None were found that related to our particular research question. We then did several trial searches with combinations
of many di�erent keywords trying to assess which keywords and keyword combinations allowed us to �nd the greater
number of potentially relevant publications.

We tried many combinations and variations of the terms: "automatic"; "user experience"; "testing"; "a�ective";
"cognitive"; and "model", judging such combinations by the number of potentially relevant papers they retrieved. We
also experimented with using both "user experience" and its acronym, "UX". In the end, we settled for the following
query:

("(emotional OR cognitive OR a�ective OR processing OR human) model") AND ("(testing OR test OR
measure OR measuring OR estimate OR evaluate OR evaluating) user experience") AND (automated
OR automatic)

Running this query through Google Scholar resulted in 133 hits, whereas running the same query through IEEExplore
or the ACM Digital library lead to no results.

Having de�ned the research string, we needed inclusion/exclusion criteria in order to �lter the publications found.
We decided to only include works that automatically evaluated UX, employed an internal model of users and had no
reliance on user testing (Tab. 1). Scanning the 133 papers found, we didn’t �nd any publication that matched our criteria.
This wasn’t too surprising: throughout our preliminary searches we were unable to �nd any work that fully satis�ed
our research question. To our knowledge, there have been no documented attempts to test UX using implementations
of a�ective/cognitive models.

Table 1. Criteria used for inclusion of publications for the systematic review.

Inclusion Criteria

-Automatically evaluates user experience
-Has no reliance on user testing (except for either training or validation)
-Employs a model of users

4.2 Scoping Review

Having been unable to �nd any publication that fully satis�ed our inclusion criteria, we decided to �nd areas of research
that could be a valuable inspiration for future research and development of automatic UX testing. We had found several
works that didn’t fully satisfy our criteria but had certain characteristics that made them useful resources for possible
future developments in the area. Some works attempted to automatically assess a single component of user experience
without modeling users and others created models of users but with di�erent objectives in mind. We considered that
having a catalog of all such works we could �nd to be a useful resource for future research.

To achieve this goal, we began a new review process. Our new research question was "What works and related areas
of research could be a valuable inspiration for future research and development of automatic UX testing?" Given the
horizontal nature of this new research question, we decided to conduct a broad scoping review instead of a systematic
one, hoping in this way to �nd areas of research that a focused systematic review could miss.

Manuscript submitted to ACM

8 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

5 RELATED RESEARCH AREAS

As previously described (Sec. 4.1), our systematic review, following strict inclusion criteria (Tab. 1), led us to conclude
that there have been no documented attempts to automatically test UX using implementations of a�ective/cognitive
models. The works presented in this section, divided in 6 di�erent research areas, were found by our broad scoping
review. We thus strive to combine in a single place all the works that we believe can provide meaningful insights and
methodology for the development of automatic UX testing.

5.1 Automated Usability Testing

One example is Cogtool [4], a UI prototyping tool that produce quantitative predictions of skilled users’ execution
time. CogTool allows UI designers and developers to deploy keystroke-level models in substantially less time by using
a cognitive model which predicts how long it will take a skilled user to complete the tasks. In addition, UI designers
and developers can interpret their CogTool models to extract design recommendations directly supported by the
psychological science underlying the models. It is one of the most widely used tools for automatic evaluation of
usability.

The accuracy of CogTool is disputed, with some authors claiming CogTool is accurate enough to be a valuable asset
for developers [53], whereas others defend CogTool is not reliable enough to be of use [30]. Whatever may be the case,
CogTool makes a case for the promising advantages of automatic usability testing and shows how such tools can be
highly bene�cial for agile development [61].

Other GOMSL based models have been used to evaluate various aspects of usability of new interface design of
high-throughput screening application [31] and estimating the usability of interactive web forms has been done using
KLM models [33].

Another approach has been not to automate the usability testing itself, but its evaluation [2]. By recording user
actions on an XML �le, Fiora et al. were able to compare them with the expected actions, estimating a number of
usability metrics. The Tracking Real-Time User Experience (TRUE) system also focuses on recording a broad amount of
information during user testing in order to better evaluate the overall user experience and accurately detect problematic
events or locations in video games, automating the process of relating actions and events to the experiences of users
[35].

An overview of the literature discussed in this section can be found in Table 2.

Table 2. Overview of reviewed UX papers in automated usability testing

Ref Approach Method

[4, 30, 33, 53, 61] Human processor modeling KLM
[31] Human processor modeling GOMSL
[2] User behavior recording Heuristics
[35] Real-time user behavior recording Indexing videos to events

5.2 Automated GUI Testing

Outside the realm of human processing models, testing the usability of software is often interconnected with testing the
Graphical User Interface (GUI), ensuring everything is working as supposed. If a button has unexpected behaviour or a
Manuscript submitted to ACM

Automated UX Testing: A Call for Research 9

user is unable to exit a certain state, usability will be negatively impacted. TESTAR is a framework that automatically
tests the GUI by mapping every possible action on each state using a widget tree model that is automatically derived
from the GUI through the accessibility API, traversing the interface by continuously choosing actions [67]. The choice
of actions can be done randomly or using more sophisticated choice methods [17, 18].

Tackling the same issue of GUI testing, Memon et al. [48] de�ne a formal model of the interface, expressed as sets
of objects, object properties and actions, in order to generate all possible states of the system. Using test cases, they
proceed by automatically interacting with the GUI, verifying if the reached state is the same as the one expected by the
formal model. If the GUI obtained state is di�erent, a problem is detected.

Other approaches have focused on the aesthetics of interfaces. Miniukovich and Angeli have taken a metric approach
to evaluate the aesthetics of websites and mobile apps [49]. Their approach was based on metrics like visual clutter and
color variability. Their results seem to indicate the approach is better suited for websites.

An overview of the literature discussed in this section can be found in Table 3.

Table 3. Overview of reviewed UX papers in automated GUI testing

Ref Approach Method

[67] Automatic test case generation Widget tree (Random action selection)
[17] Automatic test case generation Widget tree (Q-learning-based action selection)
[18] Automatic test case generation Widget tree (GP-based action selection)
[48] Automatic test case generation Formal model of interface
[49] Aesthetics evaluation Metrics of aesthetics

5.3 Artificial Emotions

We did not �nd any publication that explored the use of emotional models with the intent of testing UX. However,
there is a wealth of research in the use of computational emotional models for di�erent purposes.

A number of reviews have been done in the area. Rumbell et al. conducted a review of emotional mechanisms in
twelve di�erent emotional agents and present a series of recommendations for designing emotion mechanisms within
arti�cial agents [58]. Kowalczuk and Czubenko analyse twelve computational approaches to modeling arti�cial emotion,
discussing how they re�ect the existent psychological theories of emotion [37]. Focusing on reinforcement learning,
Moerland et al. did a survey on the use of emotional models on this machine learning architecture [50]. A state of the
art review regarding a�ective games, which are games where an assessment of the player’s emotional state in�uences
the gameplay, was also done [40].

Following a signi�cantly di�erent approach, Wang et al. describe how features and shapes of images can in�uence
emotions aroused in human beings, describing a model that can interpolate emotional arousal and valence from images
[45, 68]. Such an approach could be a very strong complement to emotional models based on psychological theories of
emotion.

An overview of the literature discussed in this section can be found in Table 4.

5.4 User Modelling

User Modelling is a sub area of Human Computer Interaction that focuses on modelling users, mostly with the intent of
adapting the response of systems to particular users. This is done based on user models, that is, "models that systems

Manuscript submitted to ACM

10 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

Table 4. Overview of reviewed papers in modeling of artificial emotion

Ref Approach Method

[58] Computational modeling of emotion Di�erent emotional mechanisms
[37] Computational modeling of emotion Arti�cial emotion modeling
[50] Model emotion in RL Several (Review)
[40] A�ective games Several (Review)
[68] Recognize emotion from images Shape modelling

have of users that reside inside a computational environment" [19]. Such modelling approaches resonate with the idea
of cognitive and a�ective modelling, but most works focus on system speci�c criteria and do not attempt to use a more
general modelling of the user’s internal state. Most of the research in the area is focused on learning systems, that is,
systems that aim to teach a certain task or set of skills to the user [14]. User modelling is relevant in such systems as it
allows the system to adapt to the learning ability and prior knowledge of the user, providing a tailored experience that
stimulates optimal learning. Whereas User Modelling is used in ways that improve UX, we were unable to �nd any
work that used User Modelling in order to estimate UX.

Martinho et al. propose a user moddeling framework based on the OCC cognitive theory of emotions (Sec. 3.2.1), an
approach that is highly aligned with our research question [47]. The framework allows to make predictions about the
a�ective state of the user based on system events. The end goal of this work was not UX testing, but the framework
could be modi�ed with that goal in mind.

Also based on the OCC cognitive theory of emotions, Conati and Maclaren "present a probabilistic model of user a�ect
designed to allow an intelligent agent to recognise multiple user emotions during the interaction with an educational
computer game" [11]. Their approach, like many others in the User Modelling community, is system dependant,
hindering the adaptation of the framework to di�erent systems, something a UX testing framework would require. This
is one of the open problems of User Modelling: how to create a user modelling framework that can be easily adapted to
di�erent systems. If this problem is solved, then the solution would be a very promising approach to automatic UX
testing.

Taking a di�erent approach, the Lumière Project uses probabilistic methods to model the intentions of users [28].
The authors create Bayesian models that allow the system under use to extrapolate the user’s intentions from observed
actions. With UX testing agents in mind, it could be interesting to invert this approach, creating models that extrapolate
the most probable user actions given a goal.

Extended reality systems can present new challenges to UX and expand the real of that which can be modelled.
Cheema et al. have proposed a Deep Reinforcement Learning model to predict the fatigue of user when interacting
with a system using arm movement [10]. Such fatigue could prove to be fundamental for predicting long term use UX.
Similar approaches could be required to complement cognitive or emotional models to ensure accurate UX automated
testing of extended reality systems.

An overview of the literature discussed in this section can be found in Table 5.

5.5 Automatic Playtesting

Changing the focus from what users feel to what users do, the research area of Automatic Playtesting focuses on
creating agents that play games in a similar manner to a human user. Such agents can be valuable assets both for
Manuscript submitted to ACM

Automated UX Testing: A Call for Research 11

Table 5. Overview of reviewed papers in user modeling

Ref Approach Method

[14] Learner modeling Several (Review)
[47] Emotion recognition OCC model of emotion
[11] Emotion recognition OCC model of emotion
[28] Goal extrapolation Bayesian models
[10] Fatigue modelling Arm mechanics model

creating and testing games. For UX testing, having agents that act as humans is also valuable, as appraising UX on a
sequence of actions that no user would ever do can fail to provide meaningful information.

Trying to mimic human cognitive processes, Stahlke et al. propose a framework to create agents that su�er from the
same limitations as humans, like a �eld of view and limited short-term memory [62]. The goal choice of such agents is
based on heuristics that try to mimic di�erent human behaviours, like hazard avoidance, exploration, aggression, etc...
These traits are called play-styles which lead to di�erent goal prioritization in the heuristics.

Using a contrasting black-box approach, Gudmundsson et al. use deep learning to train a model to choose the most
human-like action on the "Candy Crush Saga" game [23]. Despite being done on a relatively simple game, the idea of
training a model to choose the most "human-like" action instead of the best action could prove useful for designing UX
testing agents.

One could argue that not all people choose in the same way, and for that very reason Holmgård et al. de�ned di�erent
personas for testing maps for a 2D game [27]. Based on psychological decision theory, the authors implement di�erent
personas using a variation of Monte Carlo Tree Search where each persona has an altered node selection criteria
developed using evolutionary computation. This approach is later used in playtesting of Match-3 games to represent
various play-styles [52].

Automatic playtesting has also been used in order to test board games [13], where four di�erent types of intelligent
agents were used to play a board game, �nding "bugs" in the game rules and providing a wealth of information that
could previously only be obtained after many playtesting sessions with users. Card games were also tested using
automatic playtesting [20]. The authors used evolutionary algorithms to create new decks of cards, testing if some novel
strategy or deck could be prejudicial to the balance of the game. Moreover, [24] proposed to use a team of arti�cial
general intelligent agents with di�erent goals and skill levels to assess games, using expected performance of each
agent as well as how the experience of the agents evolves in the game.

To assist designers with automated playtesting, several agent-based frameworks have recently been proposed. Zhao
et. al. [6] trained playtesting AI agents to receive feedback in the game development process as well as game-playing AI
agents in order to have an interaction with human players to shape gameplay experience. They presented four case
studies, two on creating playtesting agents and two on creating game-playing agents. The game-playing agents learn
behavior policies from the game designers instead of player behaviors. The training algorithms of these agents are
chosen based on the style and skill requirements in each case studies.

With ICARUS, Pfau et al. propose a framework for autonomous video game playing, testing and bug reporting [56].
Their approach, working for all games created using a speci�c game engine, uses reinforcement learning combined with
both volatile short-term memory and persistent long-term memory to learn how to traverse the game. The framework

Manuscript submitted to ACM

12 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

is able to play games in real-time, allowing the evaluation of game performance metrics like frames per second and
CPU usage.

An overview of the literature discussed in this section can be found in Table 6.

Table 6. Overview of reviewed papers in automated playtesting

Ref Approach Method

[62] AI testing agent Mimicing players’ styles by heuristics
[23] AI testing agent CNN

[27, 52] AI testing agent with Persona MCTS and evolutionary computation
[13] AI testing agent Heuristic
[20] AI testing agent Evolutionary algorithms
[24] AI testing agent General AI algorithms
[6] AI testing agent DQN, Rainbow, DNN, Deep RL
[56] AI testing agent RL and memory

CNN: Convolutional neural network, MCTS: Monte-Carlo tree search, DQN: Deep Q-network, DNN: Deep network,
RL: Reinforcement learning

5.6 Physiological and Behavioural Measurement of UX

In this research area, we change the focus from how to develop automated UX testing to how to test and validate the
developed solutions. We believe a truly automatic UX testing approach should not rely on real users when testing a
system. However, user testing could be an integral part of both development and validation of UX testing solutions. It
has been long noted that there is a correlation between physiological responses and emotional states. William James
went so far as to propose that emotions were no more than our perception of those physiological responses [29]. For
James, fear is our mind’s perception of an increased adrenaline level, accelerated heartbeat, etc.

Based on the physiological and emotional correlation, research has been conducted in order to be able to predict
certain characteristics of UX based on a number of di�erent physiological and behavioural responses. Such approaches
can provide information about UX over time and help evaluate the accuracy of developed automatic solutions. We
found two review papers which are valuable resources for understanding the state of the art of the area [7, 51].

For example, zygomaticus muscle facial electromyography has been used as a predictor of emotional valence of boys
playing video games [26] and Drachen et al. explored the correlation between heart rate, electrodermal activity and the
self reported experience of users of �rst-person shooter games, �nding a signi�cant correlation [16].

Avoiding specialized hardware, Shaker et al. combined facial expressions, head movement and behavioural analysis
to create a machine leaning model able to predict player experience when interacting with a single player game [60].
They further built upon the model in order to be able to generate personalized game maps with the intent of inducing
certain levels of engagement, frustration, and challenge. Also relying on video feed, Tan et al. propose an approach to
automate playtesting, using facial expression recognition software to attribute a degree of fun to the playing experience
[65].

An overview of the literature discussed in this section can be found in Table 7.
Manuscript submitted to ACM

Automated UX Testing: A Call for Research 13

Table 7. Overview of reviewed papers in UX evaluation using physiological and behavioral response

Ref Approach Method

[29] Emotion recognition by physiological response ECG, GSR, EMG
[7, 51] Emotion recognition by physiological response EEG, fMRI, HR, etc
[26] Physiological measurement of UX Facial electromyography
[16] Physiological response for UX evaluation HR, EDA, reports
[60] Model UX for prediction Facial expressions, behavioral anaylsis with ML
[65] Emotion recognition by physiological response Facial expression recognition

6 CONCLUSION AND DISCUSSION

We began this study with a systematic review, searching for works that implemented cognitive/a�ective models with
the intent of automatically estimating UX. Doing so, we were unable to �nd any works that satis�ed our inclusion
criteria. We argue that this represents a research gap, which should be tackled in light of the recent technological
advances in AI and automated testing. Even if not completely, UX testing needs to be automated or it will remain a
bottleneck on development.

We thus continued our study by searching for research works that could provide meaningful insights and techniques
to serve as the foundation to the development of automated UX testing. We presented the works we believed to be
more representative and signi�cant for the goal of automated UX testing, dividing them in 6 di�erent research areas.

In making this paper, we strive to motivate and support research towards the automation of UX testing. We do
this by: presenting a lack of research on UX testing based on agents and cognitive/a�ective models (Sec. 4); and by
organizing and presenting literature that can be used as the foundation or inspiration of such research (Sec. 5).

We believe that the foundations, methods and technology required to make automatic UX testing possible can be
found in literature. However, it is necessary to join the di�erent venues of knowledge with the intent of testing UX.
This can be done in several di�erent ways, focusing on di�erent components of UX.

Inferring highly complex human emotional states can be extremely challenging. Such states can depend on a myriad
of external and internal details, many of which are not yet understood. Creating agents that can accurately simulate the
internal experience of seeing a beautiful scenery is not, at the moment, feasible. For this reason, we believe a part of UX
testing will continue to rely on user testing in the foreseeable future. This doesn’t mean, however, that we shouldn’t
attempt to automate parts of the process. Some mental states might be easier to model and predict than others. If a user
is forced to repeat the same simple task a thousand times in a row, it isn’t absurd to suppose the user will become bored.
If when playing a game, a user becomes trapped on a certain location, it is predictable that she will become frustrated.
If accomplishing a task requires keeping track of a dozens objects at the same time, it is likely the user will become
confused.

We believe UX testing automation should begin with easier to predict a�ective states. Being able to automatically
detect the aforementioned situations would already be extremely useful for both developers and designers. It wouldn’t
replace user testing, but it would reduce its burden and allow for UX testing to be constantly present during iterative
runs of development.

We consider agent based approaches to be the most promising. As presented in Sec. 5.5, there have already been
successful implementations of agents for playtesting. Endowing those agents with internal cognitive/a�ective models
could allow them not only to estimate certain UX measures but also allow them to behave in a more “human-like” way.

Manuscript submitted to ACM

14 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

These agents could be used to test not only UX but also functional aspects of the environment, allowing developers to
have a great number of such agents testing the environments in parallel, providing countless hours of gameplay testing.

Coverage is always a concern when testing a system or environment. Full coverage in testing would correspond to
visiting every single possible state of the system in search for problems. When such an approach is feasible, game-playing
agents that search the entirety of the search space can be a solution. However, there are several situations where that
is not feasible given the large number of possible states. In those situations, agents that behave as closely to humans
as possible become a valuable asset. When covering all possible states is impossible, covering the greatest number of
states that are most likely to be reached by humans can be the next best option.

It might be argued that to have such testing agents, we’d have to develop Arti�cial General Intelligence (AGI) [21],
de�ned in contrast to “narrow AI” [39] as AI that is able to generalize knowledge learnt in solving a task to help solving
di�erent tasks, equalling or surpassing humans. Having AGI would make the task much easier and the agents more
complete, but as previously said, we do not argue that agents can, for now, completely replace human users in UX
testing. What we defend is that they could automatically test some essential components of UX that do not require
human expertise, reducing the need for human labour. Using as example an industry that is already highly automated,
car factories implement robots and AI to assess the quality of the developed vehicles, but no car reaches the road
without being inspected by a human. This does not mean the automated quality control solutions were not worth the
e�ort for not being able to fully do the job of quality control. They allow the human operators to focus on those things
that require a human mind to accomplish. They also allow the car manufacturers to do more complete quality control
inspections that perhaps wouldn’t be economically viable if they had to pay human operators to do them. Furthermore,
what automatic solutions can test, they can do so more exhaustively and reliably than humans.

REFERENCES
[1] Rui Alves, Pedro Valente, and Nuno Jardim Nunes. 2014. The state of user experience evaluation practice. In Proceedings of the 8th Nordic Conference

on Human-Computer Interaction: Fun, Fast, Foundational. 93–102.
[2] Fiora TW Au, Simon Baker, Ian Warren, and Gillian Dobbie. 2008. Automated usability testing framework. In Proceedings of the ninth conference on

Australasian user interface-Volume 76. 55–64.
[3] Javier A Bargas-Avila and Kasper Hornbæk. 2011. Old wine in new bottles or novel challenges: a critical analysis of empirical studies of user

experience. In Proceedings of the SIGCHI conference on human factors in computing systems. 2689–2698.
[4] Rachel Bellamy, Bonnie John, and Sandra Kogan. 2011. Deploying CogTool: integrating quantitative usability assessment into real-world software

development. In Proceedings of the 33rd international conference on software engineering. 691–700.
[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs

Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).
[6] Igor Borovikov, Yunqi Zhao, Ahmad Beirami, Jesse Harder, John Kolen, James Pestrak, Jervis Pinto, Reza Pourabolghasem, Harold Chaput, Mohsen

Sardari, et al. 2019. Winning isn’t everything: Training agents to playtest modern games. In AAAI Workshop on Reinforcement Learning in Games.
[7] Mauro Callejas-Cuervo, Laura Alejandra Martínez-Tejada, and Andrea Catherine Alarcón-Aldana. 2017. Emotion recognition techniques using

physiological signals and video games-Systematic review. Revista Facultad de Ingeniería 26, 46 (2017), 19–28.
[8] Stuart K Card, Thomas P Moran, and Allen Newell. 1983. The psychology of human-computer interaction. 1983.
[9] Emanuelle Cavalcante, Luis Rivero, and Tayana Conte. 2015. Evaluating the feasibility of max: a method using cards and a board for assessing the

post-use UX. International Journal of Software Engineering and Knowledge Engineering 25, 09n10 (2015), 1759–1764.
[10] Noshaba Cheema, Laura A Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp Slusallek, and Perttu Hämäläinen. 2020. Predicting Mid-Air

Interaction Movements and Fatigue Using Deep Reinforcement Learning. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[11] Cristina Conati and Heather Maclaren. 2009. Empirically building and evaluating a probabilistic model of user a�ect. User Modeling and User-Adapted
Interaction 19, 3 (2009), 267–303.

[12] Roddy Cowie, Ellen Douglas-Cowie, Susie Savvidou*, Edelle McMahon, Martin Sawey, and Marc Schröder. 2000. ’FEELTRACE’: An instrument for
recording perceived emotion in real time. In ISCA tutorial and research workshop (ITRW) on speech and emotion.

[13] Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. 2017. AI-based playtesting of contemporary board games. In Proceedings
of the 12th International Conference on the Foundations of Digital Games. 1–10.

Manuscript submitted to ACM

Automated UX Testing: A Call for Research 15

[14] Michel C Desmarais and Ryan SJ d Baker. 2012. A review of recent advances in learner and skill modeling in intelligent learning environments. User
Modeling and User-Adapted Interaction 22, 1-2 (2012), 9–38.

[15] ISO DIS. 2010. 9241-210: 2010. Ergonomics of human system interaction-Part 210: Human-centred design for interactive systems (formerly known
as 13407). International Standardization Organization (ISO). Switzerland (2010).

[16] Anders Drachen, Lennart E Nacke, Georgios Yannakakis, and Anja Lee Pedersen. 2010. Correlation between heart rate, electrodermal activity and
player experience in �rst-person shooter games. In Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games. 49–54.

[17] Anna I Esparcia-Alcázar, Francisco Almenar, Mirella Martínez, Urko Rueda, and T Vos. 2016. Q-learning strategies for action selection in the
TESTAR automated testing tool. 6th International Conferenrence on Metaheuristics and nature inspired computing (META 2016) (2016), 130–137.

[18] Anna I Esparcia-Alcázar, Francisco Almenar, Tanja EJ Vos, and Urko Rueda. 2018. Using genetic programming to evolve action selection rules in
traversal-based automated software testing: results obtained with the TESTAR tool. Memetic Computing 10, 3 (2018), 257–265.

[19] Gerhard Fischer. 2001. User modeling in human–computer interaction. User modeling and user-adapted interaction 11, 1-2 (2001), 65–86.
[20] Pablo García-Sánchez, Alberto Tonda, Antonio M Mora, Giovanni Squillero, and Juan Julián Merelo. 2018. Automated playtesting in collectible card

games using evolutionary algorithms: A case study in hearthstone. Knowledge-Based Systems 153 (2018), 133–146.
[21] Ben Goertzel. 2014. Arti�cial general intelligence: concept, state of the art, and future prospects. Journal of Arti�cial General Intelligence 5, 1 (2014),

1–48.
[22] Jonathan Gratch and Stacy Marsella. 2005. Evaluating a computational model of emotion. Autonomous Agents and Multi-Agent Systems 11, 1 (2005),

23–43.
[23] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Purmonen, Bartlomiej Kozakowski, Richard Meurling, and Lele Cao.

2018. Human-like playtesting with deep learning. In 2018 IEEE Conference on Computational Intelligence and Games (CIG). IEEE, 1–8.
[24] Cristina Guerrero-Romero, Simon M Lucas, and Diego Perez-Liebana. 2018. Using a team of general ai algorithms to assist game design and testing.

In 2018 IEEE Conference on Computational Intelligence and Games (CIG). IEEE, 1–8.
[25] Marc Hassenzahl and Noam Tractinsky. 2006. User experience-a research agenda. Behaviour & information technology 25, 2 (2006), 91–97.
[26] Richard L Hazlett. 2006. Measuring emotional valence during interactive experiences: boys at video game play. In Proceedings of the SIGCHI

conference on Human Factors in computing systems. 1023–1026.
[27] Christo�er Holmgard, Michael Cerny Green, Antonios Liapis, and Julian Togelius. 2018. Automated playtesting with procedural personas with

evolved heuristics. IEEE Transactions on Games (2018).
[28] Eric J Horvitz, John S Breese, David Heckerman, David Hovel, and Koos Rommelse. 2013. The Lumiere project: Bayesian user modeling for inferring

the goals and needs of software users. arXiv preprint arXiv:1301.7385 (2013).
[29] William James. 2007. The principles of psychology. Vol. 1. Cosimo, Inc.
[30] Wiard Jorritsma, Peter-Jan Haga, Fokie Cnossen, Rudi A Dierckx, Matthijs Oudkerk, and Peter MA van Ooijen. 2015. Predicting human performance

di�erences on multiple interface alternatives: KLM, GOMS and CogTool are unreliable. Procedia Manufacturing 3 (2015), 3725–3731.
[31] David B Kaber, Rebecca S Green, Sang-Hwan Kim, and Noa Segall. 2011. Assessing usability of human–machine interfaces for life science automation

using computational cognitive models. Intl. Journal of Human–Computer Interaction 27, 6 (2011), 481–504.
[32] Evangelos Karapanos, Jean-Bernard Martens, and Marc Hassenzahl. 2010. On the retrospective assessment of users’ experiences over time: memory

or actuality? In CHI’10 Extended Abstracts on Human Factors in Computing Systems. 4075–4080.
[33] Christos Katsanos, Nikos Karousos, Nikolaos Tselios, Michalis Xenos, and Nikolaos Avouris. 2013. KLM Form analyzer: automated evaluation of

web form �lling tasks using human performance models. In IFIP Conference on Human-Computer Interaction. Springer, 530–537.
[34] David E Kieras. 1999. A guide to GOMS model usability evaluation using GOMSL and GLEAN3. University of Michigan 313 (1999).
[35] Jun H Kim, Daniel V Gunn, Eric Schuh, Bruce Phillips, Randy J Pagulayan, and Dennis Wixon. 2008. Tracking real-time user experience (TRUE) a

comprehensive instrumentation solution for complex systems. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems.
443–452.

[36] Barbara Kitchenham, Stuart Charters, et al. 2007. Guidelines for performing systematic literature reviews in software engineering version 2.3.
Engineering 45, 4ve (2007), 1051.

[37] Zdzisław Kowalczuk and Michał Czubenko. 2016. Computational approaches to modeling arti�cial emotion–an overview of the proposed solutions.
Frontiers in Robotics and AI 3 (2016), 21.

[38] Sari Kujala, Virpi Roto, Kaisa Väänänen-Vainio-Mattila, Evangelos Karapanos, and Arto Sinnelä. 2011. UX Curve: A method for evaluating long-term
user experience. Interacting with computers 23, 5 (2011), 473–483.

[39] Ray Kurzweil. 2005. The singularity is near: When humans transcend biology. Penguin.
[40] Raúl Lara-Cabrera and David Camacho. 2019. A taxonomy and state of the art revision on a�ective games. Future Generation Computer Systems 92

(2019), 516–525.
[41] E�e Lai-Chong Law. 2011. The measurability and predictability of user experience. In Proceedings of the 3rd ACM SIGCHI symposium on Engineering

interactive computing systems. 1–10.
[42] E�e Lai-Chong Law, Virpi Roto, Marc Hassenzahl, Arnold POS Vermeeren, and Joke Kort. 2009. Understanding, scoping and de�ning user experience:

a survey approach. In Proceedings of the SIGCHI conference on human factors in computing systems. 719–728.
[43] E�e Lai-Chong Law, Paul Van Schaik, and Virpi Roto. 2014. Attitudes towards user experience (UX) measurement. International Journal of

Human-Computer Studies 72, 6 (2014), 526–541.

Manuscript submitted to ACM

16 Pedro M. Fernandes and Saba Gholizadeh Ansari, et al.

[44] Richard S Lazarus and Richard S Lazarus. 1991. Emotion and adaptation. Oxford University Press on Demand.
[45] Xin Lu, Poonam Suryanarayan, Reginald B Adams Jr, Jia Li, Michelle G Newman, and James Z Wang. 2012. On shape and the computability of

emotions. In Proceedings of the 20th ACM international conference on Multimedia. 229–238.
[46] Sascha Mahlke and Manfred Thüring. 2007. Studying antecedents of emotional experiences in interactive contexts. In Proceedings of the SIGCHI

conference on Human factors in computing systems. 915–918.
[47] Carlos Martinho, Isabel Machado, and Ana Paiva. 1999. A cognitive approach to a�ective user modeling. In International Workshop on A�ective

Interactions. Springer, 64–75.
[48] Atif M Memon, Martha E Pollack, and Mary Lou So�a. 2000. Automated test oracles for GUIs. ACM SIGSOFT Software Engineering Notes 25, 6 (2000),

30–39.
[49] Aliaksei Miniukovich and Antonella De Angeli. 2015. Computation of interface aesthetics. In Proceedings of the 33rd Annual ACM Conference on

Human Factors in Computing Systems. 1163–1172.
[50] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. 2018. Emotion in reinforcement learning agents and robots: a survey. Machine

Learning 107, 2 (2018), 443–480.
[51] Seong-Eun Moon and Jong-Seok Lee. 2016. Implicit analysis of perceptual multimedia experience based on physiological response: a review. IEEE

Transactions on Multimedia 19, 2 (2016), 340–353.
[52] Luvneesh Mugrai, Fernando Silva, Christo�er Holmgård, and Julian Togelius. 2019. Automated playtesting of matching tile games. In 2019 IEEE

Conference on Games (CoG). IEEE, 1–7.
[53] Nihan Ocak and Kursat Cagiltay. 2017. Comparison of cognitive modeling and user performance analysis for touch screen mobile interface design.

International Journal of Human–Computer Interaction 33, 8 (2017), 633–641.
[54] Andrew Ortony, Gerald L Clore, and Allan Collins. 1990. The cognitive structure of emotions. Cambridge university press.
[55] Jessica Peterson, Patricia F Pearce, Laurie Anne Ferguson, and Cynthia A Langford. 2017. Understanding scoping reviews: De�nition, purpose, and

process. Journal of the American Association of Nurse Practitioners 29, 1 (2017), 12–16.
[56] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2017. Automated game testing with icarus: Intelligent completion of adventure riddles via

unsupervised solving. In Extended Abstracts Publication of the Annual Symposium on Computer-Human Interaction in Play. 153–164.
[57] Luis Rivero and Tayana Conte. 2017. A systematic mapping study on research contributions on UX evaluation technologies. In Proceedings of the

XVI Brazilian Symposium on Human Factors in Computing Systems. 1–10.
[58] Timothy Rumbell, John Barnden, Susan Denham, and Thomas Wennekers. 2012. Emotions in autonomous agents: comparative analysis of

mechanisms and functions. Autonomous Agents and Multi-Agent Systems 25, 1 (2012), 1–45.
[59] Pertti Saariluoma and Jussi PP Jokinen. 2014. Emotional dimensions of user experience: A user psychological analysis. International Journal of

Human-Computer Interaction 30, 4 (2014), 303–320.
[60] Noor Shaker, Stylianos Asteriadis, Georgios N Yannakakis, and Kostas Karpouzis. 2013. Fusing visual and behavioral cues for modeling user

experience in games. IEEE transactions on cybernetics 43, 6 (2013), 1519–1531.
[61] Anil Shankar, Honray Lin, Hans-Frederick Brown, and Colson Rice. 2015. Rapid Usability Assessment of an Enterprise Application in an Agile

Environment with CogTool. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems. 719–726.
[62] Samantha Stahlke, Atiya Nova, and Pejman Mirza-Babaei. 2019. Arti�cial Playfulness: A Tool for Automated Agent-Based Playtesting. In Extended

Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. 1–6.
[63] Ron Sun. 2008. Introduction to computational cognitive modeling. Cambridge handbook of computational psychology (2008), 3–19.
[64] Marika Tähti and L Arhippainen. 2004. A Proposal of collecting Emotions and Experiences. Interactive Experiences in HCI 2 (2004), 195–198.
[65] Chek Tien Tan and Andrew Johnston. 2011. Towards a Non-Disruptive, Practical and Objective Automated Playtesting Process. In Workshops at the

Seventh Arti�cial Intelligence and Interactive Digital Entertainment Conference.
[66] Arnold POS Vermeeren, E�e Lai-Chong Law, Virpi Roto, Marianna Obrist, Jettie Hoonhout, and Kaisa Väänänen-Vainio-Mattila. 2010. User

experience evaluation methods: current state and development needs. In Proceedings of the 6th Nordic conference on human-computer interaction:
Extending boundaries. 521–530.

[67] Tanja EJ Vos, Peter M Kruse, Nelly Condori-Fernández, Sebastian Bauersfeld, and Joachim Wegener. 2015. Testar: Tool support for test automation
at the user interface level. International Journal of Information System Modeling and Design (IJISMD) 6, 3 (2015), 46–83.

[68] James Z Wang, Xin Lu, Poonam Suryanarayan, Reginald B Adams, Jia Li, Michelle Newman, et al. 2018. Automatically computing emotions aroused
from images through shape modeling. US Patent 9,904,869.

Manuscript submitted to ACM

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR

ANNEX A2

Agents for Automatic User Experience Testing

Pedro M. Fernandes

1⇤ , Manuel Lopes

1 , Rui Prada

1

1INESC-ID and Instituto Superior Técnico, Univ. de Lisboa
{pedro.miguel.rocha.fernandes, manuel.lopes, rui.prada}@tecnico.ulisboa.com

Abstract

The automation of functional testing in software
has allowed developers to continuously check for
negative impacts on functionality throughout the it-
erative phases of development. On the other hand,
User eXperience (UX) has hitherto relied almost
exclusively on testing with real users. User test-
ing is a slow endeavour that becomes a bottleneck
for development, which in turn makes UX testing
a bottleneck as well. To address this problem, we
here propose an agent based approach for automatic
UX testing. We develop agents with basic problem
solving skills and a core affect model, allowing us
to assess their artificial affective state as they tra-
verse different levels of a game. Although this re-
search is still at a primordial state, we believe the
results here presented make a strong case for the
use of agents with the intent of automatic UX test-
ing.

1 Introduction

Hitherto, User eXperience (UX) testing has relied on real
users interacting with the system under test [Vermeeren et
al., 2010; Rivero and Conte, 2017]. To gather insights re-
garding the experience of the users, multiple approaches have
been used, from questionnaires [Schrepp et al., 2014] to
physiological measurements [Callejas-Cuervo et al., 2017;
Moon and Lee, 2016]. When applied correctly, such ap-
proaches allow us to gain a wealth of knowledge about the
caveats of the system under test and take action in order to
improve UX.

Testing with users, however, is a slow endeavour. It is not
efficient to have a user testing session at each step of the iter-
ative development process. Whereas today is common prac-
tice to run automated functionality tests each time a system
suffers an alteration, the same cannot be currently done con-
cerning UX.

In this paper, we will propose using agents endowed with
an affective model to run automated UX tests. We don’t de-
fend such agents could, in the foreseeable future, completely
replace testing with real users. User testing might even be

⇤Contact Author

used to improve the accuracy of the automated agents, as will
later be discussed. What we propose is that agents could be
used to maintain a focus on UX throughout the entire devel-
opment process, running alongside automatic functional tests.

Our research objective is to understand if such testing
agents could be a viable approach to partially automate UX
testing. With this intent, we have developed an agent en-
dowed with an internal core affect model [Russell, 2003].
This agent was then used to gain insights on the UX of differ-
ent maps of a game, Lab Recruits (Sec. 3). The results here
presented aim to be a proof of concept, showing some of the
information one could obtain using such a UX testing agent.
We believe these primordial results make a strong claim for
the usefulness of such agents. We further propose a number
of ways on which the agents could be improved to be accurate
and more versatile (Sec. 7).

This paper is organised as follows. In Sec. 2 we give a
brief overview of previous research in the area. In Sec. 3 the
testing environment is presented. In Sec. 4 we describe the
core architecture of the agent. The results are described in
Sec. 5 and the conclusions on Sec.6. Finally, in Sec. 7 we
discuss the results and propose a number of ways in which
the presented UX testing agents could be improved.

2 Related Work

Agents have been previously endowed with emotional dimen-
sions and agents have been used for testing games and assist-
ing with level design. But to the knowledge of the authors,
both these things have never been done simultaneously in or-
der to test UX. We believe this represents a research gap.

With regards to emotional agents, two reviews have been
done, providing a wealth of information on different methods
and approaches for creating agents endowed with artificial
emotions [Rumbell et al., 2012; Kowalczuk and Czubenko,
2016]. Most of these emotional agents were developed in or-
der to be able to have more realistic interactions with users.
They were therefore created to improve UX, but not to test it.

Playtesting agents have been developed that strive to play
games in a similar fashion to real users. Designed to have
some of the same limitations that human players have, these
agents can have, for example, a field of view and a limited
short-term memory. Such agents can then be used to play
games and find problems and exploits that would normally
require testing with real users to find. Stahlke et al. proposed

a framework to create this type of agents, following heuristics
based on human behaviours, like exploration, hazard avoid-
ance and aggression [Stahlke et al., 2019].

Playtesting agents have also been used to aid design.
Holmgård et al. [Holmgard et al., 2018] developed agents
with a range of different personas, that is, following differ-
ent behaviours and with different objectives. These agents
were then used to aid developers create maps for a 2D game.
These agents allowed developers to predict how different
players would traverse the map and make design decisions
accordingly. The creation of playtesting agents has also been
used to test board games [de Mesentier Silva et al., 2017;
Guerrero-Romero et al., 2018], card games [Garcı́a-Sánchez
et al., 2018] and frameworks for the development of playtest-
ing agents have been proposed [Borovikov et al., 2019;
Pfau et al., 2017].

Outside the realm of games and focusing on the prob-
lem of automated UX testing, there is research in automatic
Graphical User Interface (GUI) testing [Vos et al., 2015;
Memon et al., 2000] and automatic usability testing [Bel-
lamy et al., 2011; Kaber et al., 2011; Katsanos et al.,
2013]. Both these areas are of relevance for UX, but we
were unable to find any work in them that attempted to do
any real-time estimates as an agent interacted with a sys-
tem. In the area of User Modelling, real-time estimates of
the internal state of users is often done [Desmarais and d
Baker, 2012]. Some works have even focused on modelling
the internal emotional states of users[Martinho et al., 1999;
Conati and Maclaren, 2009], but to out knowledge, none has
done so with the intent of UX testing.

3 Test Case: Lab Recruits Game

The system under test for this paper will be a game called
Lab Recruits1. This environment was chosen as it allows
to effortlessly design different maps and provides an easy
integration with Aplib [Prasetya and Dastani, 2020], a Be-
lief–Desire–Intention (BDI) based agent framework. We can
thus design Lab Recruits maps and then deploy on those maps
agents created using the Aplib framework.

Lab Recruits is a simple 3D game where the player must
interact with objects, for example buttons, in order to achieve
a goal, which can be opening a specific door. The only ac-
tions the player can do is move or try to interact with objects.
Objects with which the player can interact will henceforth be
called interactables.

For the examples presented in this paper, the following ob-
jects were used:

• Door with Button: A door that the player can open by
interacting with the corresponding button. This object
pair can be abstracted as a NPC or interactable which,
when interacted with, allows the player to progress to-
wards the objective. This object pair is represented in
game by a door and a button connected by a wire.

• Simple Button: A button which isn’t connected to any-
thing. Even though the player can interact with it,
such an interaction is not necessary for completing the

1https://github.com/iv4xr-project/labrecruits

player’s objective. This object can be abstracted as a
NPC or other interactables that are present in games but
which are not directly relevant to the completion of the
player’s objective. This object is represented in game by
a sphere that can have different colours and which does
not have a wire connecting it to anything.

• Chair: A chair which cannot be interacted with. Find-
ing this chair is, in all our examples, the objective of the
player. This object can be abstracted as any item that a
player must find or a specific location/state that must be
reached. This object is represented in game by a black
office chair.

Further ahead in the paper, 4 Lab Recruits maps will be
introduced (Fig. 2, 4, 6 and 8). All of those maps follow the
same basic premise: the player spawns in a maze, which she
must traverse in order to find a chair. Finding the chair is the
ultimate goal of the player and when the chair is found, the
simulation ends.

4 Agent Model

In order to be used for the UX testing of our Lab Recruits
maps, the agents had to fulfil two main requirements: (a) be
able to traverse the maze; and (b) record information relevant
for UX assessment as they did so. Our approach to solving
(a) is described in Sec. 4.1 and our solution for (b) in Sec. 4.2.

As previously mentioned, the agents were developed us-
ing the Aplib framework, being therefore built upon a BDI
architecture.

4.1 Search and Traverse Algorithm

As the AI capabilities of the agents are not the main focus of
this paper, they will be only briefly described here in order
to give the reader an understanding of the agent’s behaviour.
Our objective was to have an agent that would behave in a
similar fashion to a real user.

The agent has a field of view and cannot perceive that
which is behind a wall or further than a specific distance. Be-
ing endowed with a spatial memory, the agent creates an in-
ternal map recording all the locations and objects it has found.
This internal map is that which the agent uses for navigation.

The moment the agent spawns in a map, it only knows
the location of that which it can directly perceive and knows
which object it is trying to find: a chair. It also has the prior
knowledge of how to open a door which is connected to a but-
ton. As the focus of our simulations was to test UX, it was
counter productive to have the agent learn something that the
grand majority of real users would already know how to do.

The chair finding algorithm runs as follows:

1. The agent perceives the environment and adds to its in-
ternal map all the locations and objects it has found.

2. If the chair was found, the simulation ends.
3. If the chair wasn’t found but a button that opens a door

was found, the agent will move towards the button and
interact with it in order to open the door. If more than
one door opening button was found, the agent will ran-
domly choose one to interact with.

4. If neither the chair nor a door opening button were
found, the agent moves to the closest information limit
of its internal map, striving to find more locations and
objects. A location is considered an information limit
if the agent doesn’t have any information of what is be-
yond it. The agent considers walls hard limits and will
not attempt to explore past them.

These steps are repeated in this order until the chair is
found or all off the map is completely explored.

4.2 Affective Model

UX is a broad concept that entails a great number things.
The ISO 9241-210:2019 defines UX as the ”user’s percep-
tions and responses that result from the use and/or anticipated
use of a system, product or service.”, further clarifying that
”Users’ perceptions and responses include the users’ emo-
tions, beliefs, preferences, perceptions, comfort, behaviours,
and accomplishments that occur before, during and after use.”
[DIS, 2010].

We decided to begin our research by focusing on the emo-
tional state of the user throughout the interaction with the
system. To do so, we needed to endow the agent with an
emotional model. Several theoretical models of emotion have
been proposed [Russell and Mehrabian, 1977; Ortony et al.,
1990; Plutchik, 1980], a number of which have already been
used to give agents artificial emotions [Rumbell et al., 2012;
Kowalczuk and Czubenko, 2016]. We decided to base our
model on the Core Affect theory of emotions [Russell, 2003].
This theory defends that emotions are constructed from an
initial affective state through processes like attribution and
appraisal. This affective state can be defined using two di-
mensions, which will henceforth be referred to as Pleasure
and Arousal. These dimensions can take positive or negative
values.

An affective state, by itself, is not enough to define an emo-
tional state. But according to the Core Affect theory, it is the
starting point of emotions, and as such will be the starting
point of our research. In Sec.7 we will discuss how this ap-
proach could be built upon in order to characterise complete
emotional states.

Having the two dimensions that will define our agent’s ar-
tificial affective state, we now need to define how the agent’s
interaction with the environment will alter those dimensions.
At this stage of the research, our main focus is not yet ac-
curacy, but understanding the feasibility of an agent based
approach to automatically test UX. As such, on defining how
the agent’s interaction with the environment alters its artifi-
cial affective state, we decided to use simple rules. There is
a lot of room for improvement over this rule based approach
and some proposals will be made in Sec.7.

Both the affective dimensions will be in the range {�5, 5}.
When the agent spawns in the environment, both dimensions
are neutral, that is, having a value of 0. From that moment
on, the affective dimensions are thus calculated:

• Pleasure:

– Whenever the agent is able to accomplish his ob-
jective (finding the chair) or intermediate sub-

objectives (opening doors), the Pleasure dimension
increases by 1.

– If the agent doesn’t accomplish any objective or
sub-objective for 10 seconds, the Pleasure dimen-
sion decreases by 0.4.

• Arousal:

– Whenever the agent finds a new interactable (but-
tons and doors), the Arousal dimension increases

by 1
– If the agent doesn’t find any new interactables for

10 seconds, the Arousal dimension decreases by
0.4.

The values here used are not yet an accurate representa-
tion of the affective response of a real user. To be so, they
would need to be experimentally tested, which they have not
yet been at this point in the research. As it stands, we wish
to understand if such a simple affective model could already
provide meaningful UX insights when used to test a number
of different scenarios.

5 Results

On this section, four different Lab Recruits maps will be
tested. For each, we will present the changes to the affec-
tive state of the aforedescribed agent (Sec. 4) as the map is
traversed. Such changes will be shown both in function of
the location of the agent and in function of time.

Figure 1: The colour gradation in the two dimensional core affect
space, used to represent the artificial affective state of the agent as it
traverses the maps.

5.1 Map 1

The first Lab Recruits map we will explore is the simplest
one (Fig. 2). The agent must traverse a maze where it finds
no interectables in order to reach a door. When the agent
interacts with the button that opens that door, it finds the chair,
which is its objective.

Figure 2: The layout of Map 1. In this map, the agent starts on the
top right corner and must cross the maze, finding no interactables on
its way, until it reaches a door and a button, which it has to press in
order to find the chair.

The evolution of the agent’s affective state in function of
time and space can be found on Fig. 3b and Fig. 3a, respec-
tively.

Both the Pleasure and Arousal dimensions remain negative
throughout the agent’s traversal of the map. Both Arousal and
Pleasure steadily decrease (Fig. 3b) until the agent finds the
door and the button, where both dimensions finally increase
(Fig. 3a).

5.2 Map 2

In the second map, the agent must traverse the same maze as
it did in Map 1. However, this time the agent will find inter-
actables on its way to its final objective. These interactables,
being buttons not connected to anything, are not relevant to
the completion of the agent’s objective.

The evolution of the agent’s affective state in function of
time and space can be found on Fig. 5b and Fig. 5a, respec-
tively.

The Pleasure dimension of the agent’s affective state
steadily decreases as it traverses the maze (Fig. 5b), but this
time its Arousal dimension increases each time the agent finds
an interactable (Fig. 5a).

5.3 Map 3

In Map 3, the agent once again finds itself in a maze. This
time, to reach the chair, the agent will not only have to open
the final door but 3 other doors that are located throughout the
maze. The agent is unable to reach its objective unless the 4
doors are opened. Besides the doors and their corresponding
buttons, the agent will find 2 other interactables in the maze.

The evolution of the agent’s affective state in function of
time and space can be found on Fig. 7b and Fig. 7a, respec-
tively.

Unlike the previous maps, both the Pleasure and Arousal
affective dimensions remain positive throughout the agent’s
traversal of the map (Fig. 7b). The agent’s Arousal increases
whenever it sees an interactable and its Pleasure increases
each time the agent successfully opens a door (Fig. 7a).

5.4 Map 4

The fourth map we will analyse is considerably different from
the previous 3. This time, the agent is not in a maze but in a

(a)

(b)

Figure 3: The evolution of the agent’s affective state in function of
time (a) and space (b) as it traverses Map 1 (Fig. 2). The colours
in (a) can be mapped to the 2-dimensional Core Affect space using
Fig. 1. In (b), the dots become increasingly light blue as time passes.
This means that the first affective measurement is a totally black dot,
whereas the last measurement is a bright blue dot. We can see that
both affective dimensions turn gradually more negative over time
until the agent finally finds the door and opens it, which leads to
an increase in both the affective dimensions. The agent’s affective
state remains in the negative-arousal and negative-pleasure quadrant
throughout the traversal.

room with 28 doors. Each door has a button that opens it and
behind one of the doors, is the chair. The agent can see from
the start all the doors and buttons but cannot see the chair
before opening the right door.

In this map, the agent’s affective experience is very differ-
ent depending on how ”lucky” the agent is. In the best case
scenario, the agent will open the correct door on the first at-
tempt. On the worst case scenario, the agent will open 27
doors before finally opening the correct one. Because of this,
we will here explore both the best and worst case scenarios.

Best Case Scenario

In the best case scenario, the first button that the agent acti-
vates opens the correct door, leading it to the chair.

The evolution of the agent’s affective state for this scenario
in function of time and space can be found on Fig. 9b and

Figure 4: The layout of Map 2. In this map, the agent starts on the
top right corner and must cross the maze, finding four interactables
on its way, which are not directly relevant to its objective. At the end
of the maze, the agent will find a door and a button, which it has to
press in order to find the chair.

Fig. 9a, respectively.
In this scenario, the agent’s traversal of this map is swift, as

the agent must only move from its original position to that of
the correct button. Its Arousal dimension doesn’t have time
to suffer any changes and the Pleasure dimension increases as
the agent is able to open the door and find the chair.

Worst Case Scenario

In the worst case scenario, the agent first opens at random 27
doors before finally opening the correct one, behind which it
finds the chair.

The evolution of the agent’s affective state for this scenario
in function of time and space can be found on Fig. 10b and
Fig. 10a, respectively.

Whenever the agent is able to successfully open a door,
the agent’s Pleasure dimension increases (Fig.10a). However,
since the agent could see all the buttons and doors since the
beginning, there is nothing to increase the agent’s Arousal,
which steadily decreases with time (Fig 10b).

6 Conclusion

Our agent had considerably different affective responses
when traversing each of the 4 different maps that we have
tested.

On Map 1 (Fig. 2), the absence of any interactables
throughout the map traversal led the agent’s affective state
to be on the negative-arousal and negative-pleasure quadrant
during the entirety of the simulation (Fig. 3a and 3b). On
Map 2 (Fig. 4), interactables were scattered throughout the
maze, being, however, not relevant to the completion of the
agent’s objective. This made the agent’s affective state to re-
main on the positive-arousal and negative-pleasure quadrant
(Fig. 5a and 5b). On Map 3 (Fig. 6), not only the agent finds
interactables but also doors that it needs to open in order to
accomplish its objective. Both these things make the agent’s
affective state remain on the positive-arousal and positive-
pleasure quadrant (Fig. 7a and 7b). Finally, on Map 4 (Fig. 8),
the nature of the scenario made it so that the agent would
have very different traversals depending on which doors it
chose to open. Because of this we decided to study both the
best and the worst case scenario. On the best case scenario,
the agent quickly finds the chair, having an increase on the

(a)

(b)

Figure 5: The evolution of the agent’s affective state in function of
time (a) and space (b) as it traverses Map 2 (Fig. 4). The colours
in (a) can be mapped to the 2-dimensional Core Affect space using
Fig. 1. In (b), the dots become increasingly light blue as time passes.
This means that the first affective measurement is a totally black dot,
whereas the last measurement is a bright blue dot. In this map, the
arousal dimension increases each time the agent finds a new inter-
actable. The pleasure dimension, however, steadily decreases until
the agent finds the door and opens it, finding the chair. The agent’s
affective state remains in the positive-arousal and negative-pleasure
quadrant throughout the traversal.

pleasure dimension of its affective state as a result (Fig. 9a
and 9b). On the worst case scenario, the agent continuously
opens doors that he had already found and that don’t lead to
its objective, increasing its pleasure dimension but making
the agent’s arousal steadily decrease. In this case, the agent’s
affective state remains in the negative-arousal and positive-
pleasure quadrant (Fig. 10a and 10b).

We can thus see how different maps arouse different affec-
tive states on the test agent. They also do so in ways that
are to some extent predictable. It’s not surprising that a map
that consists of a monotonous maze will give a player neither
arousal nor much pleasure whereas a maze with challenges
that the player can solve and a number of objects to interact
with will do the opposite.

However, predicting what will happen in maps of greater

Figure 6: The layout of Map 3. In this map, the agent starts on
the top right corner and must cross the maze, having to open 3 doors
before reaching the final door, behind which is the chair. As opening
these 3 doors is mandatory to reach the final goal, interacting with
the 3 relevant buttons becomes a sub-goal. The agent will further
find 2 interactables which are not relevant to the main goal before
reaching the final door and the button which it has to press to find
the chair.

magnitude, which might have several sections with differ-
ent densities of challenges and objects is not so trivial. The
information this approach provides can allow developers to
pinpoint exactly where changes need to be made in order to
arouse in the players certain affective states. Designers might
decide to purposely make a section of the map lower the
arousal of a player in order to prepare him to a high arousal
inducing location that appears soon afterwards.

The very different affective results gotten from traversing
the same map according to different paths (Fig. 9 and 10)
highlight the importance of the agent’s decisions on its af-
fective experience. Here we have chosen to show, on Map
4, the best and worst possible cases depending on the doors
the agent decides to open. For the sake of brevity, we have
not shown the expected average result, which would have the
agent open half the doors before finding the chair. The agent’s
affetive state would in that case be in the same quadrant as the
worst case scenario, but with a higher value in the arousal di-
mension.

This paper aims to be a proof of concept, showing that
UX testing agents are able to provide information that can
be highly useful for both testing and designing. The fact
such agents can show UX related information at precise mo-
ments and locations also allows them to relay information that
would be very difficult to obtain with real users unless physi-
ological methods were employed. Enquiring a user about her
experience as she plays a game will inherently alter the user
experience, but that is not the case with UX testing agents.

7 Discussion

The first questions that might come to the mind of the reader
are: ”But how accurate is this information? How can I be sure
the information the agents conveys does indeed reflect how a
real user would feel and experience the system?”. Those are
very good questions, which we are currently working on to
be able to answer. With this paper, our goal was to show how
one could employ agents in order to test UX and explore the
type of information such agents could provide. We believe
our results show that agents could help automate UX testing

(a)

(b)

Figure 7: The evolution of the agent’s affective state in function of
time (a) and space (b) as it traverses Map 3 (Fig. 6). The colours
in (a) can be mapped to the 2-dimensional Core Affect space using
Fig. 1. In (b), the dots become increasingly light blue as time passes.
This means that the first affective measurement is a totally black dot,
whereas the last measurement is a bright blue dot. We can see that
both affective dimensions increase as the agent traverses the map.
Arousal increases whenever the agent finds a new interactable and
pleasure increases whenever the agent is able to accomplish a goal
or sub-goal (opening doors). The agent’s affective state remains in
the positive-arousal and positive-pleasure quadrant throughout the
traversal.

and make it an integral part of the development process with-
out becoming a bottleneck. In the following paragraphs, we
will discuss ways in which this UX testing agents could be
improved and made accurate.

To ensure the results do indeed correlate with how users
experience the system, user testing could be employed in or-
der to fine tune the model to faithfully represent the affective
changes users experience. This testing with real users could
be done only once in order to attune the UX testing agents
to the system under test, allowing the developed agents to be
used automatically and without requiring user testing for the
remainder of the system’s life-cycle.

This ”tuning” process could be done, for example, us-
ing machine learning and user testing based on physiolog-

Figure 8: The layout of Map 4. This map is considerably different
from the previous three, but the objective remains the same: finding
the chair. The agent begins at the centre of the map and must press
the correct button from the 28 buttons that surround it. All of the
buttons open a corresponding door, but the chair is only behind one
of them. The agent has no way of knowing behind which door the
chair is.

ical methods [Callejas-Cuervo et al., 2017; Moon and Lee,
2016]. Users could be asked to interact with the system un-
der test as both physiological measurements and game events
are recorded. The game events, like player location and object
interaction, could then be used as input for the machine learn-
ing model and an interpretation of the physiological measure-
ments under the emotional model chosen could be the desired
output. We could then fine tune the model parameters and the
model itself to ensure they accurately represent how a real
user experiences the system.

In order to have access to full emotional states instead of
affective states, the model could be expanded to have an ex-
tra dimension, Dominance, and modified in order to be in
accordance with the PAD model of emotions [Russell and
Mehrabian, 1977]. This model claims emotions can be char-
acterised in a 3-dimensional state, the dimensions being Plea-
sure, Arousal and Dominance.

The results of our tests make it seem the greater the number
of interactables, the better the affective response. However,
this might change as soon as we add a cognitive load compo-
nent to our model. Cognitive load theory defends there is an
upper limit to the number of new objects that a user can keep
track of [Sweller, 2011]. This could mean that the presence
of too many objects related to accomplishing the user’s ob-
jective could in fact make the user enter a state of cognitive
overload, leading to a negative UX. It is thus a viable expan-
sion to the approach to not only improve the emotional model
but also implement cognitive load considerations.

(a)

(b)

Figure 9: The evolution of the agent’s affective state in function of
time (a) and space (b) as it traverses Map 4 (Fig. 8) in the best case

scenario. The colours in (a) can be mapped to the 2-dimensional
Core Affect space using Fig. 1. In (b), the dots become increasingly
light blue as time passes. This means that the first affective measure-
ment is a totally black dot, whereas the last measurement is a bright
blue dot. This traversal is a swift one, with the agent going directly
to the right button and increasing its pleasure dimension. As the
agent had found all the buttons since the start, the arousal dimension
remains neutral.

The fact that different traversals of the same map lead to
different affective results exposes the importance of develop-
ing agents that behave in the most ”human like” way possible.
If the agents make choices that a user would never do, then
the UX information the agents convey might prove to be of no
importance. It might also be of no interest to try and program
agents to exploit systems in order to find ways of interacting
which lead to a negative UX, as the agent might, in the exam-

(a)

(b)

Figure 10: The evolution of the agent’s affective state in function of
time (a) and space (b) as it traverses Map 4 (Fig. 8) in the worst case

scenario. The colours in (a) can be mapped to the 2-dimensional
Core Affect space using Fig. 1. In (b), the dots become increasingly
light blue as time passes. This means that the first affective measure-
ment is a totally black dot, whereas the last measurement is a bright
blue dot. In this scenario, the pleasure dimension increases each
time the agent is able to open a door by interacting with a button.
As it never finds any new interactables, the agent’s arousal dimen-
sion steadily decreases throughout the traversal. As such, the agent’s
affective state remains in the negative-arousal and positive-pleasure
quadrant throughout the traversal.

ple of a game, decide to continuously walk against a wall and
proceed to claim the game can be very uneventful. We thus
defend that the development of UX testing agents will not
only require well tuned models to assess UX, but also agents
that behave as similarly to human users as possible.

Finally, we here present a preliminary approach to test a

very simple game, but this approach could be modified to test
a number of other systems and should not be interpreted as
game-specific. Agents with a similar architecture could be
used, for example, to test the interface of a store, with the
pleasure and arousal dimensions being modelled based on the
user finding an item of interest or being able to accomplish a
successful purchase or using a coupon. We believe this ap-
proach could be used with any system where events that af-
fect the core affect state of an user can be, to a certain degree,
identified. This event identification could even be done auto-
matically, using machine learning models and physiological
measurements.

References

[Bellamy et al., 2011] Rachel Bellamy, Bonnie John, and
Sandra Kogan. Deploying cogtool: integrating quantita-
tive usability assessment into real-world software develop-
ment. In Proceedings of the 33rd international conference
on software engineering, pages 691–700, 2011.

[Borovikov et al., 2019] Igor Borovikov, Yunqi Zhao, Ah-
mad Beirami, Jesse Harder, John Kolen, James Pes-
trak, Jervis Pinto, Reza Pourabolghasem, Harold Chaput,
Mohsen Sardari, et al. Winning isn’t everything: Training
agents to playtest modern games. In AAAI Workshop on
Reinforcement Learning in Games, 2019.

[Callejas-Cuervo et al., 2017] Mauro Callejas-Cuervo,
Laura Alejandra Martı́nez-Tejada, and Andrea Catherine
Alarcón-Aldana. Emotion recognition techniques using
physiological signals and video games-systematic review.
Revista Facultad de Ingenierı́a, 26(46):19–28, 2017.

[Conati and Maclaren, 2009] Cristina Conati and Heather
Maclaren. Empirically building and evaluating a proba-
bilistic model of user affect. User Modeling and User-
Adapted Interaction, 19(3):267–303, 2009.

[de Mesentier Silva et al., 2017] Fernando de Mesen-
tier Silva, Scott Lee, Julian Togelius, and Andy Nealen.
Ai-based playtesting of contemporary board games. In
Proceedings of the 12th International Conference on the
Foundations of Digital Games, pages 1–10, 2017.

[Desmarais and d Baker, 2012] Michel C Desmarais and
Ryan SJ d Baker. A review of recent advances in learner
and skill modeling in intelligent learning environments.
User Modeling and User-Adapted Interaction, 22(1-2):9–
38, 2012.

[DIS, 2010] ISO DIS. 9241-210: 2010. ergonomics of hu-
man system interaction-part 210: Human-centred design
for interactive systems (formerly known as 13407). Inter-
national Standardization Organization (ISO). Switzerland,
2010.

[Garcı́a-Sánchez et al., 2018] Pablo Garcı́a-Sánchez, Al-
berto Tonda, Antonio M Mora, Giovanni Squillero, and
Juan Julián Merelo. Automated playtesting in collectible
card games using evolutionary algorithms: A case study
in hearthstone. Knowledge-Based Systems, 153:133–146,
2018.

[Guerrero-Romero et al., 2018] Cristina Guerrero-Romero,
Simon M Lucas, and Diego Perez-Liebana. Using a team
of general ai algorithms to assist game design and testing.
In 2018 IEEE Conference on Computational Intelligence
and Games (CIG), pages 1–8. IEEE, 2018.

[Holmgard et al., 2018] Christoffer Holmgard,
Michael Cerny Green, Antonios Liapis, and Julian
Togelius. Automated playtesting with procedural per-
sonas with evolved heuristics. IEEE Transactions on
Games, 2018.

[Kaber et al., 2011] David B Kaber, Rebecca S Green, Sang-
Hwan Kim, and Noa Segall. Assessing usability of
human–machine interfaces for life science automation us-
ing computational cognitive models. Intl. Journal of
Human–Computer Interaction, 27(6):481–504, 2011.

[Katsanos et al., 2013] Christos Katsanos, Nikos Karousos,
Nikolaos Tselios, Michalis Xenos, and Nikolaos Avouris.
Klm form analyzer: automated evaluation of web form fill-
ing tasks using human performance models. In IFIP Con-
ference on Human-Computer Interaction, pages 530–537.
Springer, 2013.

[Kowalczuk and Czubenko, 2016] Zdzisław Kowalczuk and
Michał Czubenko. Computational approaches to modeling
artificial emotion–an overview of the proposed solutions.
Frontiers in Robotics and AI, 3:21, 2016.

[Martinho et al., 1999] Carlos Martinho, Isabel Machado,
and Ana Paiva. A cognitive approach to affective user
modeling. In International Workshop on Affective Inter-
actions, pages 64–75. Springer, 1999.

[Memon et al., 2000] Atif M Memon, Martha E Pollack,
and Mary Lou Soffa. Automated test oracles for guis.
ACM SIGSOFT Software Engineering Notes, 25(6):30–39,
2000.

[Moon and Lee, 2016] Seong-Eun Moon and Jong-Seok
Lee. Implicit analysis of perceptual multimedia experience
based on physiological response: a review. IEEE Transac-
tions on Multimedia, 19(2):340–353, 2016.

[Ortony et al., 1990] Andrew Ortony, Gerald L Clore, and
Allan Collins. The cognitive structure of emotions. Cam-
bridge university press, 1990.

[Pfau et al., 2017] Johannes Pfau, Jan David Smeddinck,
and Rainer Malaka. Automated game testing with icarus:
Intelligent completion of adventure riddles via unsuper-
vised solving. In Extended Abstracts Publication of the
Annual Symposium on Computer-Human Interaction in
Play, pages 153–164, 2017.

[Plutchik, 1980] Robert Plutchik. A general psychoevolu-
tionary theory of emotion. In Theories of emotion, pages
3–33. Elsevier, 1980.

[Prasetya and Dastani, 2020] ISWB Prasetya and Mehdi
Dastani. Aplib: An agent programming library for test-
ing games. In Proceedings of the 19th International Con-
ference on Autonomous Agents and MultiAgent Systems,
pages 1972–1974, 2020.

[Rivero and Conte, 2017] Luis Rivero and Tayana Conte. A
systematic mapping study on research contributions on ux
evaluation technologies. In Proceedings of the XVI Brazil-
ian Symposium on Human Factors in Computing Systems,
pages 1–10, 2017.

[Rumbell et al., 2012] Timothy Rumbell, John Barnden, Su-
san Denham, and Thomas Wennekers. Emotions in au-
tonomous agents: comparative analysis of mechanisms
and functions. Autonomous Agents and Multi-Agent Sys-
tems, 25(1):1–45, 2012.

[Russell and Mehrabian, 1977] James A Russell and Albert
Mehrabian. Evidence for a three-factor theory of emo-
tions. Journal of research in Personality, 11(3):273–294,
1977.

[Russell, 2003] James A Russell. Core affect and the psy-
chological construction of emotion. Psychological review,
110(1):145, 2003.

[Schrepp et al., 2014] Martin Schrepp, Andreas Hinderks,
and Jörg Thomaschewski. Applying the user experience
questionnaire (ueq) in different evaluation scenarios. In
International Conference of Design, User Experience, and
Usability, pages 383–392. Springer, 2014.

[Stahlke et al., 2019] Samantha Stahlke, Atiya Nova, and
Pejman Mirza-Babaei. Artificial playfulness: A tool for
automated agent-based playtesting. In Extended Abstracts
of the 2019 CHI Conference on Human Factors in Com-
puting Systems, pages 1–6, 2019.

[Sweller, 2011] John Sweller. Cognitive load theory. In Psy-
chology of learning and motivation, volume 55, pages 37–
76. Elsevier, 2011.

[Vermeeren et al., 2010] Arnold POS Vermeeren, Effie Lai-
Chong Law, Virpi Roto, Marianna Obrist, Jettie Hoonhout,
and Kaisa Väänänen-Vainio-Mattila. User experience
evaluation methods: current state and development needs.
In Proceedings of the 6th Nordic conference on human-
computer interaction: Extending boundaries, pages 521–
530, 2010.

[Vos et al., 2015] Tanja EJ Vos, Peter M Kruse, Nelly
Condori-Fernández, Sebastian Bauersfeld, and Joachim
Wegener. Testar: Tool support for test automation at the
user interface level. International Journal of Information
System Modeling and Design (IJISMD), 6(3):46–83, 2015.

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR

ANNEX A3

Assessing Players’ Cognitive Load in Games
Alberto Ramos

Department of Computer Science and Engineering
Instituto Superior Técnico

Lisbon, Portugal
alberto.ramos@tecnico.ulisboa.pt

Abstract—Due to the exponential growth of computer tech-
nologies, video games are becoming more complex each passing
year; with tasks and challenges that, very often, defy the player’s
cognitive abilities. Handling limitations of the Working Memory
and proper Cognitive Load management is crucial when dealing
with problem-solving tasks; however, these concepts appear to be
highly undervalued, or even unknown, in the gaming industry.

To address this problem and help game designers to better
understand the intrinsic complexity of their games, this work
applies the attention-shifting principles of the Time-Based Re-
source Sharing (TBRS) Memory Model in the game Way Out
(a game we have developed from scratch). We formulated the
idea of Attention-Grabbing Events and tried to incorporate them
into the game, aiming to create a tool-set that estimates the
player’s Cognitive Load while playing a video game. To validate
our hypothesis, we compared the data collected from the game
with the questionnaire NASA TLX – a subjective method that
assesses the mental workload felt during a task.

Although we were unable to directly estimate the player’s
Cognitive Load, we believe that this work was a step forward
towards achieving that goal. The amount of Attention-Grabbing
Events and gameplay time, when compared with the NASA TLX,
seem to be a good indicator of Cognitive Load levels; however,
the TBRS Cognitive Load formula, in its current form, does not
appear to be reliable when directly applied in a general gameplay
scenario – at least following the approach we did.

Index Terms—Cognitive Load (CL), Working Memory (WM),
Time-Based Resource Sharing (TBRS), Video Game, Game
Development, NASA TLX.

I. INTRODUCTION

Due to the exponential growth of computer technologies in
the last decades, video games are becoming more complex and
diversified than ever. From deep and intriguing storytelling to
complex game mechanics, it is unquestionable that the video
game industry is doing a proper job in keeping up with this
growth and creating games that are becoming more realistic
and immersive each passing year.

Back in the 70s and 80s, when video gaming was emerging
and becoming mainstream, games were much simpler and
had straightforward mechanics that a joystick and a few
set of buttons could handle. Space Invaders, for example, a
fixed shooter created by Tomohiro Nishikado in 1978 that
is considered one of the most influential video games of all
time, consists of controlling a space cannon horizontally while
firing descending alien forces. The enemy spaceships approach
the player more rapidly as time passes, making the game
harder the longer it’s played. The mechanics, however, are
quite simple and easy to memorize.

Nowadays the story has diverged immensely – each year,
thousands of new video games are released with complex
mechanics that take much longer to master and require entire
keyboards to be played with. An example of this can be
observed in the game Dark Souls, an action role-playing game
that was developed by FromSoftware and released in 2011. In
this game, the player assumes the role of an undead character
that explores the virtual kingdom of Lordran to seek the fate
of his kind. A game well known for its hard boss fights
that, in order to be beaten, forces the player to learn from
past mistakes by memorizing the enemies movements and
weaknesses. Demanding mechanics like these require a great
amount of attention and cognitive resources and, if not dealt
with accordingly, can easily lead to negative emotions such as
frustration or anger.

Handling limitations of the Working Memory and proper
Cognitive Load management is crucial when dealing with
problem solving tasks and is proven to positively influence
effective performance and learning [1]. Since the Working
Memory has a limited capacity and is believed to only retain
information for a small period of time of approximately twenty
seconds, it is easily overloaded if more than a few chunks of
information need to be simultaneously processed.

These limitations and concepts, which are highly important
in neurological and physiological matters, appear to be quite
undervalued and ignored in the gaming industry. If Cognitive
Load and the overall correct management of Working Mem-
ory’s resources are taken into consideration by game designers
in early phases of game development, highly beneficial results
could be obtained. By estimating the amount of Cognitive
Load that a players’ Working Memory is using while playing
a video game, game designers would have, in addition to play
testing feedback, an extra source of reliable information that
would be an indicator of their game levels complexity. Hence,
excessively demanding tasks could be detected and adjusted
accordingly earlier, facilitating and cutting costs in the play
testing phase and allowing the developers to focus on other
aspects of the game.

Assuming it is possible to estimate the duration of time in
which the players’ attention was fully grabbed during a game,
it is theoretically possible to apply the principles of a Memory
Model to assess the players’ Cognitive Load. Therefore, we
hypothesise that if the attention-shifting principles of the
Time-Based Resource Sharing (TBRS) Memory Model are
incorporated in games, and if the model’s formula to assess

Cognitive Load is correctly used, it would be possible to
estimate the amount of cognitive resources used by a player’s
Working Memory, while playing a video game.

This work aims to confirm whether or not our hypothesis
is valid, by integrating this model within a game that we
have developed from scratch. We will compare the collected
game data with a subjective method that also estimates a
users’ Cognitive Load during an activity – the NASA TLX
questionnaire.

II. BACKGROUND

The distinction between the nowadays called “Short-Term
Memory” (STM) and “Long-Term Memory” (LTM) was
firstly, somewhat, controversial. It was argued that such di-
vision was useless and would unnecessarily complicate the
concept of memory. However, evidence that such division
would, in fact, make sense, started to emerge around the 60s.
A strong argument in favor of a dichotomy in the memory
system was noticed by Milner, while studying patients with
hippocampal lesions [2], who appeared to became incapable
of either store or retrieve information from the LTM but could
still process and register immediate input for short periods
of time. This inspired R. C. Atkinson and R. M. Shiffrin
to deepen the studies of the memory and the dichotomy of
the LTM and this new “Short-Term Store”, leading them to
conceive the first Memory Model [3].

The Working Memory (WM), initially named Short-Term
Store and, nowadays, often called Short-Term Memory, is now
commonly known as a cognitive system crucial for reasoning
and decision-making that can hold information for a short
period of time. Additionally, contrary to the LTM, the WM has
a limited capacity and a certain amount of resources available
to properly work.

In the context of our work, Cognitive Load (CL) refers
to the amount of resources used by our WM to properly
function (i.e. to solve problems, learn novel information, react
to stimulus, etc.). These resources are limited and need to be
properly managed to avoid “cognitive overloading” [4].

A. Memory Models
While studying and analysing different Memory Models

proposed over the years (e.g. Multi-Store Memory Model [3],
Working Memory Model (1974 [5] and 2000 [6]), to better
understand the core components that allow our Working Mem-
ory to properly function, we came across one that particularly
grabbed our attention – the Time-Based Resource Sharing
(TBRS) Memory Model, initially proposed by Barrouillet and
Camos in 2004 [7].

This Memory Model explains how the WM functions, based
on four main assumptions:
The first, is that both the processing and maintenance of
information requires and share the same resource, which is
attention.
The second assumption is that as soon as attention is switched
away, the activation of the memory traces suffers from a time-
related decay. Additionally, the refreshment of these decaying

Fig. 1: Time Based Resource Sharing - “Reading digit span task” exercise.

memories traces, requires their retrieval from memory by
attentional focusing.
The third assumption is that any processing that captures
attention, disrupts maintenance by preventing the refreshment
of memory traces; therefore, WM functioning is limited by a
central bottleneck.
Which leads to the fourth and final assumption: since attention
can only be devoted to one process at the time, maintenance
and processing cannot occur concurrently, meaning that, to
maintain information in WM (to avoid forgetting) it is re-
quired that the individual regularly switches attention from
processing. This means that the central bottleneck allows only
one central process at time, making the sharing of attention
time-based.

To validate their hypothesis, they came up with a simple
task where participants were asked to maintain letters in
memory while simultaneously performing a secondary task
that involved reading a series of digits that were presented,
one at the time, on a screen (Figure 1).

The idea is that if time pressure is applied to a task as
simple as this, it can easily become much more demanding.
Thus if the digits from the secondary task are presented at a
fast pace, maintaining the letters in WM becomes much harder
since there is less time to reactivate memory traces – leading
to a higher CL. However, if the digits are presented at a slow
or comfortable pace, there is time to reactivate memory traces
– leading to a low or moderate CL.

In the case of this model, Cognitive Load refers to the
total amount of time during which attention was fully
captured and can be formulated as:

CL =

PN
i=1 ai

T

(1)

ai reflects the latency in which the ith event fully
captured attention.
T refers to the total duration of the task or activity.

If the total number of processes N is known, the formula
can be simplified by using average processing times:

CL =
aN

T

(2)

To illustrate the concept of CL, i.e. the balance between the
competing actions that are processing and maintenance, and

grabbing the example from Figure 1; suppose that a participant
has to say 10 letters out loud, each takes 200ms to be said
and the time available is 4 seconds. The resulting CL of this
example would be 10 x 200 / 4000 or 0.5. However, if the
time available doubled, the resulting CL would be cut in half
(10 x 200 / 8000 or 0.25).

B. Methods to assess Cognitive Load

When it comes to measuring CL, the main challenge is
knowing if the methods used are valid, reliable and practical.
Conventionally, there are two main approaches to assess the
WM’s capacity: Objective and Subjective [8].

The Objective approach mainly relies on behavioral data
collected from the users while performing a task. Whilst
commonly more reliable, this approach may affect a users’
focus from the task itself, since it often requires the usage
external and intrusive machinery. Direct objective measures
include examples of dual-task methodologies, eye-tracking or
task-invoked pupillary response and brain-activity measures.

The Subjective approach is probably the most common
and, as the name implies, requires the subject to do some
sort of self-report after completing a task. Usually these
subjective self-reports require the subject to rate the perceived
mental effort or task difficulty in a numerical scale and there
are several different types of reports focusing on different
problems. One of the great advantages of using self-reports
is its simplicity, since it solely requires the appropriate set
of questions for the activity that’s being implemented on.
Additionally, being subjective means that there is no need of
using external equipment collecting behavioral data during an
activity, making this a non-intrusive approach.

There are two most commonly used techniques for subjec-
tively assessing mental workload [9], the NASA TLX and the
SWAT. They both divide the workload in multiple subscales
and are proven to provide quite similar results [9]. However,
for the context of our work, since it assesses a wider variety
of mental workload components involved in the experience,
we ended up opting to use the NASA TLX technique.

C. NASA TLX

The NASA TLX (NASA Task Load Index), developed in
1981 by Sandra G. Hart of the NASA Ames Research Center
[10] is one of the most known subjective techniques to assess
CL. It has been used in various domains such as healthcare,
aviation, and others of similar technical complexity. It is a
subjective workload assessment technique that relies on a
multidimensional construct to derive an overall workload score
based on a weighted average of ratings on six subscales: Frus-
tration, Effort, Temporal Demand, Physical Demand, Mental
Demand and Performance. These sub-scales of the workload
are based on the assumption that some combination of these
dimensions are likely to represent the “workload” experienced
by most people performing most tasks [11]. Three of the
subscales focus on the demands imposed on the subject
(mental, temporal and physical demand), whereas the other

three explore the interaction of the subject with the task (effort,
performance and frustration levels) .

NASA TLX consists of two parts: weights and ratings.
Generally, the first requirement is for the participant to evaluate
the contribution of each subscale – its weight – of the workload
during the task (the weights themselves also provide diagnostic
information as the nature of the workload imposed by the
task).

To do so, there are 15 possible pairwise comparisons of the
six subscales of workload. Each pair (for instance, Temporal
Demand vs Mental Demand) is presented at the time and the
subject has to chose the member of each pair that contributed
more to the workload of the task performed (in our case, the
game). At the end of every pairwise comparison, we count
the number of times that each subscale is selected instead of
the others. It can range from 0 (never selected in a pairwise
comparison) to 5 (selected in every pairwise comparison) –
this is the resulting weight assigned for that specific subscale.

The second requirement is to obtain individual numerical
ratings for each subscale – which reflect the magnitude of
that factor in the task. Thus, the respondents are asked to rate
each subscale individually from 0 to 10 or 0 to 100 (least to
most taxing).

The adjusted ratings for each of the six subscales of the
workload is computed by multiplying their respective weight
with their raw rating (Equation 3). For example, if the weight
and rating of Temporal Demand was 4 and 50 respectively, its
Adjusted Rating would be 4 x 50 = 200.

AdjustedRating = Weight ⇤RawRating (3)

Using the NASA TLX, the overall workload of a task, i.e.
its resulting CL, is the result of the sum of the Adjusted
Ratings divided by 15 (which is the total amount of pairwise
comparisons) (Equation 4).

WorkloadNASATLX =

P
AdjustedRatings

15
(4)

III. IMPLEMENTATION

To test our hypothesis – whether or not is possible to
estimate the player’s Cognitive Load based on the attention-
shifting principles of the TBRS – we decided to create a
game from scratch; since it didn’t impose restrictions in our
creativity and gave us the necessary flexibility to create a
satisfying game environment in which it made sense to fully
test our hypothesis.

The chosen name for the game was – Way Out. The player
plays as a golem who just woke up in a mysterious laboratory
and is trying to figure out the purpose of his existence. To do
so, he has to solve puzzles and challenges in a dungeon-like
environment to both progress through the map and find clues
about himself.

The hidden plot is that a human scientist has become the
first to achieve full conscience transmutation. The puzzles the
golem has to solve were created by the golem himself in
his human form, and are a simple way to determine if the

scientist’s cognitive and reasoning skills have remained intact
in his new body.

However, due to the nature of this work, the small demo
that we have created and tested mainly explores the puzzles
and challenges of the game and not the plot itself.

With the goal of analyzing possible CL variations, a total
of four versions of the game were developed. Each version’s
puzzles had particular tweaks and changes to analyse this
eventual discrepancy. These key particularities of the game
will be explored in-depth in the following sections.

A. Attention-Grabbing Events
According to TBRS memory model, CL is the result of the

total attention time of a task divided by the total time of that
task (Formula 1).

With the goal of adapting the TBRS attention-shifting prin-
ciples and its CL formula to game development, we decided
the following: even though they are most likely very distinct
from game to game, through any game the player has to
execute certain actions or events to progress, which usually
take a certain chunk of time to be performed. Whenever one
of these events occurs, its duration (i.e. the time since the event
begins until it ends) could be translated into a period of time in
which the player’s attention was supposedly shifted towards
processing information. We call these – Attention-Grabbing
Events (AGE).

Having the total gameplay and AGEs duration, it is theoret-
ically possible to recreate the TBRS CL calculation. However,
since all games are different and we are trying to generalize
our model to cover any game type, we highly emphasize that
the game designers are the ones who should ponder and
choose the AGEs, taking into account the type of game
being developed.

This being said, we will now explain which events were
considered attention-grabbers in our game:

• Object Interactions: The time spent interacting with
interactive objects (Figures 2(a) and 2(b)).

((a)) Mouse outside an
interactive object

((b)) Mouse inside an
interactive object

Fig. 2: Way Out: Object Interactions

• Interface Interactions: The time spent with the In-
ventory, Instructions, Notebook and Sphere placeholder
interface opened (e.g. Figure 3).

• Notifications: Time in which notifications were shown
on screen (e.g. Figure 4).

Fig. 3: Way Out: Interface Example (Inventory)

Fig. 4: Way Out: Notification Example

However, the overlap of events would interfere with the
formula, since it would mean that the player’s attention would
be shifted towards processing multiple events at once. An
example of this happening can also be observed in Figure
4, where the player is interacting with an object whilst a
notification is simultaneously being displayed. Pressing the
button triggered the notification, but the player kept hovering
the interactive object.

Therefore, in order to mitigate these temporal overlays, we
found useful to create an hierarchy for our game’s AGEs
(Figure 5).

Fig. 5: Attention-grabbing Events hierarchy

We intentionally designed the interfaces to occupy a large
chunk of the screen, so we assume that whenever the player is
actively interacting with an UI element (e.g. the is Inventory
open), object interactions and notifications become disabled,
mitigating a possible overlap of attention.

The same principle applies to object interactions – if the
player starts interacting with an object while a notification is
being displayed on the screen, it is assumed that the player’s
attention is being shifted towards the interaction, not taking
into consideration notification’s display time in the equation.

B. Game Versions
According to the TBRS memory model, a task is more

cognitive demanding when it requires a larger amount of
attention shifting. In the case of our game, as mentioned in the
previous section (III-A), we consider object interactions, noti-
fication and interface display times our main AGEs. Therefore
– theoretically – for the same gameplay duration, the greater
the number of AGEs, the greater the value of the CL will be.

That being said, and since the intrinsic difficulty of a task is
proven to be correlated with higher levels of CL [9], we started
by creating two versions of our game, “Easy and “Hard”,
with the goal of analyzing if the data collected from the
Easy versions of the game would indicate lower levels of
CL than the Hard ones.

Both versions contain the exact same type of puzzles,
challenges and possible interactions. However, the puzzles
from the Easy version were intentionally twisted to require a
lesser number of interactions for its resolutions, which would
overall result in a less amount of AGEs.

Furthermore, we will also wanted to validate our model
focusing on time. Once again, TBRS defends that the CL is
the result of the attention time dedicated to a task divided
by the time of that task [7]. However if the player is, for
example, trying to solve a problem and has to move through
the map without interacting with any objects, the gameplay
time is counting but the attention time is not which, according
to the formula (1), would result in a lower CL. And this is
precisely the point that we want to verify. If, for the same
puzzles, in order to solve them the player is forced to move
around the map, would this increase, maintain or decrease
the player’s CL?

TABLE I: Game Versions.
Normal Movement Additional Movement

Easy A1 B1
Hard A2 B2

Thus, as seen in Table I, we ended up creating four versions
of the game.

Two that solely explore the contrast between the intrinsic
difficulty of the game – A1 and A2 – where all the items
required for the resolution of the puzzles are all relatively close
to each other, not forcing the player to move through the map
in order to solve them. Note that “Normal Movement” means
there is no extra movement, i.e. all the items required for the
resolution of the puzzle are relatively close to each other.

The other two – B1 and B2 – beyond exploring the intrinsic
difficulty of the puzzles, also explore the repercussions that
the additional movement induced on the player has on the CL
results. More specifically, the effects that additional gameplay
time has on the player’s CL. In these versions, the items
required for the resolution of the puzzles are scattered around
the map, forcing the player to move more through the map in
order to solve them – hence the “Additional Movement” in
Table I. This will theoretically increase the overall gameplay
time and, consequently, using the TBRS CL formula, decrease
the CL.

C. Game Puzzles
The puzzles implemented1 were designed to verify the

effects that the variations in AGEs and movement had on the
players’ CL. For that purpose, we have developed two main
puzzles that slightly vary between the four versions of our
game.

To test the discrepancies between the players’ attention
through the versions (A1 vs A2 and B1 vs B2), both puzzles
require more or less AGEs for their resolution. To test the
difference in the players movement through the versions (A1
vs B1 and A2 vs B2), i.e. more or less gameplay time, we
changed the items disposition between the versions of the
puzzles.

For instance, the first puzzle of our game – The Lever
Puzzle – requires the player to move 6 levers to unlock a door.
Initially, of the 6 levers, only 3 are correctly positioned and
ready to move. For all four versions of the game, the player
has to first find the 3 missing levers and place them on the
machines that still require one.

The difference between the Easy and Hard versions of the
game are the effects that the movement of each lever has on
the other machines.

In the Easy versions (A1 and B1), each lever only affects
its machine. For instance, Lever #3 only affects the state of
Machine #3, turning it on (lever up) or off (lever down).
Therefore, the easy versions’ solution is fairly simple – the
player solely has to find and place the missing levers correctly
and turn on the machines (by moving each lever up).

On the other hand, in the Hard versions of the game, each
lever movement can affect the state of multiple machines. For
example, Lever 5 affects the state of Machines #4, #5 and #6,
by either turning them on or off depending on their current
state. This leads to a theoretical higher number of interactions
– and AGEs – since the solution is not as straight forward as
the opposite versions.

When it comes to the players’ movement, the A and B
versions of the game differ from the position of the machines
– represented as white dots in Figure 6.

In both the A versions (Figure 6 (a)), all the machines are
close to each other, allowing the player to clearly see the effect
that each lever interaction has on the puzzle. While in the B
versions (Figure 6 (b)), the machines are scattered around two
rooms. Hence, to analyse the effect that each lever interaction
has on the puzzle, the player has to move around.

D. Data Gathering and Cognitive Load calculation
To follow the principles of the TBRS memory model and

in order to use its formula [7], we need to collect relevant
gameplay data that estimates the players’ attention time during
the game. Therefore and, as mentioned on a previous section
(Section III-A), beyond the Total Gameplay Time, we will
mainly collect data related with the duration of the multiple
AGEs that occur throughout the game (listed in Section III-A).

1A full walk-through of all the game puzzles and versions is
available at: https://www.youtube.com/watch?v=95j85Add1Rg&ab channel=
AlbertoRamos

https://www.youtube.com/watch?v=95j85Add1Rg&ab_channel=AlbertoRamos
https://www.youtube.com/watch?v=95j85Add1Rg&ab_channel=AlbertoRamos

((a)) Versions A ((b)) Versions B
Fig. 6: Way Out: Lever Puzzle (Versions A and B)

The total sum of AGEs will return the Total Attention
Time (Equation 5) during the game. The Total Attention
Time will after be used as the dividend in the adapted TBRS
CL formula; whereas the Total Gameplay Time will be the
divisor (Equation 6).

TotalAttentionT ime =
NX

i=1

AGE (5)

CL =
TotalAttentionT ime

TotalGameplayT ime

(6)

Additionally, in order to support any possible unexpected
values, we also collected the number of times each type
of AGE happened (e.g number of times the Inventory was
opened).

When the player completes the game, all the data listed
above will be stored on a online Google Sheets document for
further analysis.

IV. PROCEDURE AND RESULTS

Fig. 7: Procedure to acquire data

In short, the structure of the followed procedure is summa-
rized in Figure 7.

With the goal of seeking basic information about the
respondents and understand where they fit in the general
population, the first part of the procedure consists of asking
the participants the following demographic questions: “Age”,
“Gender”, “Mother Tongue”, “How often do you play video
games?”, “Do you enjoy point and click puzzle games?”.

Once collected, this data allows us, if needed, to divide the
population of respondents in various groups, which will be
useful in the overall analysis.

In the midst of the questionnaire, after answering the
demographic questions, the participants are asked to play the
game Way Out, which is the second part of the procedure
– extensively explained in the previous section (Section III).
After playing and finalising the game, a random code name
is generated and provided to the player, so it can be pasted
the questionnaire, linking the game data with the questionnaire
answers.

The third and final part of the procedure consists of asking
the participants questions related with their workload during
the game, in order to validate our hypothesis. To do so, we
need to compare the game data that may affect the CL with an
existing valid and trustworthy method that accurately measures
the workload of a task.

In a general sense we are examining the “workload” ex-
perienced by the player during the gameplay. Cognitive Load
and Mental Workload are often used as synonyms and the
relationship between workload factors and CL types was
analysed in depth by Galy, Cariou and Mélan (2011) [9].

Therefore, after playing the game, the participants were
asked to answer a few questions related with their overall
workload during the game.

For that purpose, we will use the NASA TLX questionnaire
[12] which was explained in detail in a previous section
(Section II).

A. Pilot

Before broadening the experience to a larger sample of
participants, we opted to first test it with a small sample –
aiming to correct eventual game bugs and to better understand
whether the questionnaire was adequate. During this phase,
we specifically asked the participants to be extra critical and
transparent, since our goal was precisely to adjust any eventual
flaws with the experience.

Apart from a few game bugs pointed out, a consistent
feedback received during this phase was that the pairwise
comparisons, at the end of the questionnaire, were somewhat
confusing. Some even went as far as saying that the compar-
isons looked all very similar and that “in the end, they selected
almost randomly”. Discarding the pairwise comparisons is
another way of using the questionnaire and often called – RAW
TLX.

However, since the RAW TLX is a “trimmed” version of
the NASA TLX without the pairwise comparisons, we ended
up providing the full version of the questionnaire in the actual
experiment; with the premise that the first thing to analyse was
the possible discrepancies between the two versions (NASA
TLX versus RAW TLX) – and whether or not it was justified
to use the shorter version of the questionnaire, when analysing
and comparing the collected data.

B. Sample

In total, we had a convenience sample of 54 participants
responding to the questionnaire and playing the game. It is im-
portant to emphasise that all tests were done remotely. Hence,

the experiment was advertised in multiple social platforms –
namely Discord, Facebook and Instagram.

To analyse the obtained results, we used the software
SPSS Statistics (V26) from IBM; where all the NASA TLX
calculations were made and the charts, graphs and tables
presented in this section were generated.

From the 54 participants, 45 (83.33%) identified themselves
as males whilst 9 (16.67%) identified as females. The majority
of our respondents (90.74%) speaks Portuguese as their native
language while the other 10% speak others (such as English,
Norwegian, German and Swedish).

When asked how frequently they play video games, half
(27 – exactly 50%) responded that they “made some time in
their schedule to play video games”, 17 respondents answered
that they “play occasionally” and 10 “do not play video games
often”.

Lastly, when asked about how familiar they were with this
game genre, 29 (53.70%) of our respondents answered that
they “enjoyed and have played/watched others play multiple
times”, 20 (37.04%) were “not familiar or did not have a
formed opinion” and only 5 (9.26%) “did not appreciate these
types of games”.

C. The questionnaire of choice: NASA TLX
To clarify a question brought up during the pilot tests phase

(Section IV-A), we started our analysis by comparing the ques-
tionnaire results with and without the pairwise comparisons,
i.e. by comparing the NASA TLX with the RAW TLX – to
choose which version of the questionnaire would be more
suitable to validate our hypothesis.

We found that there was a high positive correlation between
the CL reported by the two versions of the questionnaire, with
a nearly perfect Pearson correlation of 0.945 (as seen in Figure
8).

Fig. 8: Bivariate Correlation (Pearson) between the CL from the NASA TLX
and RAW TLX.

Since it is typically more common to use the full version
of the questionnaire, and due the high positive correlation
observed with its trimmed version, we opted to solely validate
the gameplay data with the full version of the questionnaire –
the NASA TLX.

D. Hyphothesis
According to our model, we hypothesise that the CL values

will be higher in the Hard versions – A2 and B2 – where,
theoretically, more AGEs occur. Additionally, we also want to
observe the repercussions in CL when, for the same type of
puzzles, the items required for their resolution are scattered

around the map (A1 and A2 versus B1 and B2), forcing the
player to move more and, consequently, increasing the overall
gameplay time. More specifically, we were interested in find-
ing out whether or not the hypothetical increase of gameplay
time would affect the CL. Would it increase it, because the
players were more consciously focused in shifting attention
towards maintenance – to avoid forgetting the relevant and
required items? Or would it decrease because the players have
more time to process and maintain the information required
for the resolution of the puzzles in WM?

To clarify our hypothesis, we started by analysing gameplay
time (Figure 9) where, interestingly enough, we noticed that
both the A versions took, in average, slightly longer to
complete than the B versions. We ran a Kruskal-Wallis test that
showed that there is at least one pair of significantly different
groups (H(3) = 18.74 ; p .001). The pairwise comparisons
with a Bonferroni correction showed that the harder versions
(A2 and B2) took significantly longer to complete than the
easier versions (p .05) – comparing A1 with A2 and B1
with B2.

Fig. 9: Simple Bar Mean of Gameplay Time by the game versions; Error
Bars refer to the Standard Error of the Mean (SEM).

Due to the game versions implementation, these results were
unexpected – since we tried to implement the game in a
way that the B versions would result, in average, in a higher
gameplay time than the A versions. Therefore, we analysed
two main things: The first was whether or not the A versions
had a higher number of participants that did “not play often”
than the B versions. As seen in Figure 10, we found that to
be indeed true.

Fig. 10: Table showing the distribution of the “Gameplay Frequency” groups
across all four versions of the game.

The second, was to analyse if there was, in fact, a significant
difference in gameplay time between the different “game-
play frequency” groups (i.e. “Does not play often”, “Plays
occasionally”, “Makes time to play”). We ran a Kruskal-
Wallis test that confirmed that there was, indeed, a significant

difference; H(2) =10.320, p = .006. The pairwise comparisons
with a Bonferroni correction showed that there is a significant
difference in gameplay time between the groups “Occasionaly
- Not Often” with p = .004, and “Makes time - Not Often”
with p = .003.

To confirm whether these results were due to the groups
distribution, we decided to analyse them without the 10
respondents that answered “Not Often” – considering them,
in this specific analysis (Figure 11), as outliers.

Fig. 11: Simple Bar Mean of Gameplay Time by the game versions – without
the group “Not Often”; Error Bars refer to the Standard Error of the Mean
(SEM).

As seen in Figure 11, discarding the respondents that
answered “Not Often”, the average gameplay time of the A
versions decreased much more when compared with the B
versions – A1 went from 562.20s to 507.86s and A2 from
1120.18s to 911.31s, while version B1 went from 529.89s to
520.26s and B2 from 885.68s to 828.00s. However, although
closer, the average gameplay time between the A and B version
was still very similar, which was not intended when designing
the game.

This led us to conclude that our manipulation of the “Ad-
ditional Movement” (B) versions was unsuccessful. Meaning
that we were unable to answer one of the questions we initially
had: “For two puzzles with a similar intrinsic difficulty, how
would the variations in gameplay time affect the player’s CL?”

Following the gameplay time, we analysed the other factor
that, according to the TBRS, also influences the CL of a task
– the attention time. Again, very briefly, for each player,
the attention time results from the sum of the duration of
every AGE during the gameplay. We ran a Kruskal-Wallis
test to analyse the distribution of attention time across the
different game versions (H(3) = 23.12; p .001). The pairwise
comparisons with a Bonferroni correction showed the same
pattern found in gameplay time: A1 demanded significantly
less attention time than A2 (p = .002) and B1, less attention
than B2 (p = .011). As expected, the versions of the game
with a higher difficulty (A2 and B2) had also, on average, a
higher attention time (Figure 12).

Fig. 12: Simple Bar Mean of Attention Time by the game versions; Error
Bars refer to the Standard Error of the Mean (SEM).

Onto the actual CL values reported from the game (Figure
13), we can conclude they were very similar in every version
(around 32%). We ran a Kruskal-Wallis test to analyse the
distribution of the calculated CL (using the TBRS formula)
across the different game versions (H(3) = .842; p = .839),
and found that there were no statistically significant differences
between the medians. These results, however, do not reflect the
differences noticed in terms of gameplay and attention time;
meaning that, perhaps, the adapted TBRS CL formula, in its
current form, is not sensitive enough to detect the variations
across the versions.

Fig. 13: Simple Bar Mean of the players CL percentages by the game versions
(using the TBRS CL formula); Error Bars refer to the Standard Error of the
Mean (SEM).

Observing both the gameplay time (Figure 9) and attention
time (Figure 12) bar charts, a noticeable pattern can be seen –
a higher gameplay time appears to result in a higher average of
attention time. To clarify this, we made a Pearson correlation
between these two variables (Figure 14) and we ended up
observing a high positive correlation of 0.860. This means
that, whenever the gameplay time increases, there is a high
chance that the attention time will also follow that path.

Fig. 14: Bivariate Correlation (Pearson) between the gameplay time and
attention time

If both the dividend and divisor have a high positive
correlation (i.e. in the equation, when one increases/decreases
the other also follows that path) – the resulting CL will always
be similar regardless of the times spent in the game – which
justifies the results obtained in Figure 13. A possible way
to mitigate this problem would be by significantly restricting
the gameplay time and, for instance, by asking the player
to complete as many tasks as possible in the time limit.
However, since our goal was to generalize our hypothesis to
any game type, we opted not to add a time restriction in our
implementation.

Onto the NASA TLX scores, there is a noticeable CL
variation across the game versions (Figure 15), leading us to
observe two main things:

• According to the NASA TLX, as predicted, the players
that played the more challenging versions of the game
(A2 and B2), reported higher values of CL during the
game (comparing A1 and B1 with A2 and B2).

• The “Additional Movement” (B) versions appear to have
induced a slightly higher percentage of CL when com-
pared with their respective “Normal Movement” (A)
versions. This inclines us to assume that the distance
between crucial items for the game appears to, in some
way, affect the CL (comparing A1 with B1 and A2 with
B2). Nevertheless, as discussed previously, the “Addi-
tional Movement” (B) versions were not successfully
manipulated – preventing us from concluding anything
concrete related to this topic.

Fig. 15: Simple Bar Mean of the NASA TLX’s CL by the game versions;
Error Bars refer to the Standard Error of the Mean (SEM).

Comparing the NASA TLX scores with the CL obtained
from the game, we notice that there is no correlation (Figure
16 highlighted with red). This can be justified by the same
reason why the average CL reported from the game rounded
the 32% for every version (Figure 13).

However, we also wanted to observe if there was a correla-
tion between the NASA TLX scores and both the individual
dimensions that, according to the TBRS memory model, affect
the CL – gameplay time and attention time. Even though not
perfect, as seen in Figure 16 (highlighted in yellow), there is
a positive Pearson correlation between the NASA TLX scores
with both the game times. This makes sense because the same
pattern has been observed across the previous results: The
Hard versions (A2 and B2) resulted in significant longer

game times (both total gameplay and attention) and higher
NASA TLX scores; while the opposite was observed in the
Easy versions (A1 and B2).

Fig. 16: Bivariate Correlation (Pearson) between the gameplay time, attention
time, CL from the game and CL from the NASA TLX.

V. DISCUSSION

It is unquestionable that the video game industry is doing
a proper job in keeping up with the exponential technological
growth. Each passing year, thousands of games are launched
with complex mechanics and challenges that, if not dealt with
properly, can easily defy the limitations of the players WM.
This work hypothesised that it was possible to assess the
players CL based on their gameplay behaviours – and figuring
out a way to accomplish it was our motivation.

The approach we took consisted of applying the attention-
shifting principles of the TBRS Memory Model in the game
Way Out (a game we have developed from scratch). Based on
the model’s principles, we formulated the idea of Attention-
Grabbing Events (AGE) – which are periods of time during the
gameplay in which the player’s attention is most likely being
grabbed. In Way Out, we considered the following events
as attention-grabbers: object interactions, actively interacting
with the game’s UIs and display notification times. Having the
total gameplay time and player’s attention time, it would be
possible to apply a formula similar with the one from TBRS
to estimate the player’s CL.

We implemented four versions of the game to manipulate
two variables, each with two levels (a 2x2 factorial design): we
manipulated the number of AGEs to analyse the repercussions
that more or less AGEs had on the player’s CL (versions A1
and A2); and we also manipulated how much players had to
move around the map, aiming to see the effects that a longer
gameplay time had on their CL (versions B1 and B2).

To validate our results, we opted to use the NASA TLX
Questionnaire – a subjective approach that assesses the mental
workload experienced during a task. The experiment was
advertised across multiple social media platforms, and we
ended up with a convenience sample of 54 participants. It
consisted of answering a few demographic questions; followed
by playing the game Way Out; and ended with the NASA TLX
questionnaire.

The main variables we wanted to analyse across all game
versions were: the total gameplay and attention times, the
CL experienced by the players during the game (using the
TBRS formula) and the resulting CL from NASA TLX (the

players NASA TLX scores). While analysing the gameplay
data – namely the gameplay time – we ended up with some
unexpected results. The “Additional Movement” (B) versions
took, in average, less time to complete than the “Normal
Movement” (A) versions. Leading us to conclude that our
manipulation of the B version was unsuccessful; and pre-
venting us from answering a question we initially had: “For
two puzzles with a similar intrinsic difficulty, how would the
variations in gameplay time affect the player’s CL?”

On the contrary, the game data indicated that our manipula-
tion of the intrinsic difficulty of the puzzles was successful –
the players that played the harder versions (A2 and B2) spent
more time interacting with objects and playing the game, when
compared with the players that played the easier versions (A1
and B1).

Using the TBRS CL formula to calculate the CL expe-
rienced by the players during the game, we noticed that it
was nearly the same across all the game versions (around
32%). However, we also noticed that there was a high positive
correlation between the gameplay and attention times; and,
since the formula we used to calculate the CL results from the
division of these two variables – the similar percentages of CL
can be justified by this positive correlation. Nevertheless, we
concluded that the TBRS CL formula, at least in its current
form, is not sensitive enough to directly measure the player’s
CL in a gameplay scenario.

Finally, we analysed the NASA TLX scores, aiming to
compare them with the game data. We noticed that the players
that played the harder versions (A2 and B2) scored higher
percentages of CL when compared with the ones that played
the easier versions (A1 and B1). This led us to conclude that,
although the TBRS formula does not appear to be sensitive
enough to directly assess the player’s CL, there was a positive
correlation between the game times (both total gameplay and
attention time) and the NASA TLX scores, meaning that –
more AGEs and gameplay time resulted in higher scores of
CL using the NASA TLX.

This was the first study that tried to assess the player’s
CL, in an automatic non-intrusive way, while playing a video
game. Even though we were unable to directly estimate the
player’s CL, we believe that our work was a step forward
towards achieving that goal. Based on the TBRS attention-
shifting principles, the amount of AGEs and gameplay time,
when compared with the NASA TLX scores, seem to be a
good indicator of CL levels; however, the TBRS CL formula,
in its current form, does not appear to be reliable when directly
applied in a general gameplay scenario – at least following the
approach we did.

VI. LIMITATIONS AND FUTURE WORK

In order to strengthen our conclusion, a larger sample of
players should be gathered – ideally with the same amount of
participants for each different version and with similar gaming
experience.

Directly following our work, it would be interesting to
verify whether intrinsic time pressure in a similar game, using

the TBRS adapted CL formula, would return more reliable
results. In other words, would the direct division of the total
attention time by the total restricted gameplay time, return
similar CL values to the ones reported in a valid questionnaire
(for instance, NASA TLX).

In addition, it would also be interesting to answer one of
the questions that we initially had, but were unable to an-
swer due to the unsuccessful manipulation of the ”Additional
Movement” (B) versions: How would the items disposition
affect the player’s CL? More specifically, how would the CL
vary if the player had to memorize something crucial for the
gameplay, but no AGEs happen for an extended period of
time? For instance, the player retains a code sequence in WM
that is written in a room, but that information is only useful
after the player follows a long trail.

Even though our initial goal was to support game designers
(especially during the testing phase) – by providing them with
a toolset that measured the CL percentage experience by the
players, while playing a video game – this work could be
expanded in a broader set of fields. For instance when de-
signing and implementing autonomous agents; where human-
like behaviours, based on the available cognitive resources,
could be improved by using the principles of the TBRS
and attention-shifting in an approach similar to ours. In this
scenario, game designers would also be the ones defining the
AGEs, taking in consideration the environment in which the
agents were situated.

REFERENCES

[1] J. Sweller, J. J. G. Van Merrienboer, and F. Paas, “Cognitive architecture
and instructional design,” Educational Psychology Review, September
1998.

[2] W. Scoville and B. Milner, “Loss of recent memory after bilateral hip-
pocampal lesions,” Journal of neurology, neurosurgery, and psychiatry,
February 1957.

[3] R. C. Atkinson and R. M. Shiffrin, “Human memory: A proposed system
and its control processes.” In K. W. Spence and J. T. Spence (Eds.),
The Psychology of learning and motivation: Advances in research and
theory, 1968.

[4] F. Paas, A. Renkl, and J. Sweller, “Cognitive load theory and instruc-
tional design: Recent developments,” Educational Psychologist, June
2010.

[5] A. Baddeley and G. Hitch, Working memory. Academic Press, 1974.
[6] A. Baddeley, “The episodic buffer: A new component of working

memory?” Trends in cognitive sciences, December 2000.
[7] P. Barrouillet and V. Camos, “The time-based resource-sharing model

of working memory,” The Cognitive Neuroscience of Working Memory,
June 2007.

[8] J. Sweller, P. Ayres, and S. Kalyuga, Cognitive Load Theory, ser. Explo-
rations in the Learning Sciences, Instructional Systems and Performance
Technologies. Springer New York, 2011.

[9] E. Galy, M. Cariou, and C. Mélan, “What is the relationship between
mental workload factors and cognitive load types?” International journal
of psychophysiology : official journal of the International Organization
of Psychophysiology, October 2011.

[10] S. Hart and L. Staveland, Human Mental Workload. Elsevier Science,
1988.

[11] S. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” in Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, October
2006.

[12] A. Cao, K. Chintamani, A. Pandya, and R. Ellis, “Nasa tlx: Software
for assessing subjective mental workload,” Behavior research methods,
March 2009.

D4.1 – 1st prototype of SETAs

WP4-D4.1 iv4XR

ANNEX A4

Collaboration analysis in multi-player based
simulations

Bruno Carreira
bruno.carreira@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2020

Abstract

This work consists on an approach aimed at helping developers of interactive software to test their
scenarios, more specifically collaboration inducing maps. Our approach is based on using two different
automated agents behavioural traces (policy), one specifying the scenarios Design Goal and the other an
example of a non-Design Goal. After training said agents and by comparing the agents optimal behaviour
when solving each scenario to the two policies we can determine if the scenarios allow to differentiate
between the Design Goal and the non-Design Goal and order the scenarios from easiest to differentiate
to hardest. Our approach was tested in two different environments, in a custom built simulator and in the
iv4XR project game and AIGym Lab Recruits.
Keywords: Multi-player based simulation; scenario testing; collaboration detection; automated agents
behavioural traces.

1. Introduction
We want to develop a method that helps designers
of interactive software to test their scenarios and
see if they can distinguish different behaviours.

When we think about problem solving, any type
of problem, if we only receive the final answer, can
we be totally certain that the problem was clearly
understood? That the idealized steps/methods/be-
haviours for that problem were followed?

One example, in line with our work, is the use of
serious games for team training simulation. When
a company is focused on using training simula-
tions to improve team collaboration, they need to
be mindful of questions such as:

• Can they conclude that there was teamwork
by simply observing if the team reaches the
objective?

• What if the team did reach the objective but
the individual members didn’t work as a team
and actually just acted by themselves?

• Did the scenario allowed them to have a
choice between collaborating and not collab-
orating, or did the scenario simply forced them
to work together? If so, can they really say that
they learned to collaborate?

Answering these questions can be somewhat
of a difficult task, especially during the develop-

ing phase of scenarios where there are constant
changes in the maps, objectives, among others.

Emerging from the iv4XR project1, our main goal
is to use Reinforcement Learning (RL) policies to
evaluate designed scenarios on their capability of
allowing and distinguishing collaborative and non-
collaborative behaviours. These policies will be ex-
tracted from automated agents developed for this
work and corroborated from real-life users.

We will consider different scenarios in two differ-
ent examples:

• Squary-Shappy - Self-developed game/simu-
lator for this work.

• Lab Recruits - AIGym and game developed for
the iv4XR project.

2. Related Work
The approach taken for our work derives from ar-
eas such as Automated Playtesting with Agents
and Collaborative Behaviour, specifically definition
of collaborative and non-collaborative behaviour. In
this section we present a condensed description of
work previously made related to the approach we
here present, and that also served as inspiration.

2.1. Automated playtesting with Agents
Aiming at decreasing the time taken and the man-
ual overhead that playtesting causes has led to the

1www.iv4xr-project.eu/

1

use of automatic playtesting. The main objective
behind automated playtesting consists in the use
of virtual and autonomous agents that will test the
software gathering data only previously obtained
by real-life users. Correlated to our work, auto-
mated playtesting with agents is commonly asso-
ciated to the games industry where automatically
testing scenarios/maps is one of the main focuses
since it could be used to help the content creation
process in game development.

Silva et al. [2] demonstrated how the use of
different intelligent agents allowed them to eval-
uate game rules and map variants in the game
Ticket To Ride. This work consisted on the use
of several game related heuristic-based automated
agents to simulate common users strategies and
analyse several map variations of the game. Their
approach allowed them to identify several key ob-
servations specific to the game such as how differ-
ent strategies matchup in the different game/map
variations, discover specific states not covered by
the game rules, undesirable cities (paths) taken as
well as the most probable routes to win in each
map.

Holmgard et al. [6] present a method that con-
sists on using player modeling to create automated
agents as game-personas enabling them to au-
tomatically playtest and evaluate content in the
game MiniDungeons 2, more specifically the map-
s/levels. After several experiences, described by
the authors, they observed that use of automated
agents as personas to analyse game levels in
games with similar complexity to the MiniDungeons

2 proved to be helpful when evaluating the game
levels, more significantly, identifying which maps
were better suited for each type of players. Similar
to [6], Mugrai et al. [8] presented their work on the
use of different human-like agents and strategies,
meaning game personas, to playtest various levels
of the game Match-3. Supported by a user study,
their experiences proved that the use of different
player perspectives and strategies allowed them to
properly new evaluate level designs of the game,
specifically in measuring what can be perceived as
the difficulty of levels.

The research presented in this Subsection pro-
vides an indication that analysis of games rules
and scenarios/maps can be done using specifica-
tions of design goals (strategies, game objectives,
among others) in automated agents, which is in-
line with this works objective of using automated
agents as a way of evaluating game-like scenarios
by identifying collaborative and non-collaborative
behaviours (design goals).

2.2. Collaborative Behaviour
To understand how to differentiate and recre-
ate collaborative and non-collaborative behaviours
for our automated agents, we must understand
how collaboration works and is developed in both
human-human and agent-agent interactions.

2.2.1 Human-Human collaboration

Most of, if not all, living entities have used col-
laboration in several aspects of their lives since
it improves individual production [5] and humans
have been collaborating since the early stages of
our existence until the modern day, whether it’s
hunting animals in a prehistoric age or raising a
modern building [9], working as a team towards a
shared goal has been a common behaviour for our
species.

Although every situation is unique and every
group interacts in a different manner, there are
several collaboration aspects that are considered
universal such as, clear and open communication
[10], consensus about goals and methods for com-
pleting tasks [4], clear definitions on each contrib-
utors role [11], placing group goals above individ-
ual satisfactions [1], among others. The success-
ful implementation of these elements through com-
munication and coordination is the key for teams/-
groups to work effectively in a collaborative man-
ner. Stephen et al. [3] researching high performing
teams suggested that most experience teams de-
velop a shared mental model in order effectively
coordinate and predict each others movements
while also improving their communication. Shared
mental models (SMM) are referred to as knowl-
edge structures for group members to similarly un-
derstand the team objectives, individual needs and
responsibilities. This allows for teams to equally vi-
sualize the problem at hand and anticipate future
actions and states. No matter the complexity, or
simplicity of a task, the use of shared mental mod-
els has been corroborated as a collaborative indi-
cator in human-human collaboration [7].

2.2.2 Agent-agent collaboration

Creating collaborative agents can be a problem.
How can we have artificial agents working as
team? Putting group goals above their own? How
can we create agents that really work as a team
and not just happened to have the same individu-
als goals?

Different answers and methods have be re-
searched and used, but one of the most common
techniques to teach agents on how to collaborate is
to create a system similar to what high-performing
human teams develop, a shared mental model.
The SMM method has been widely researched

2

([14], [15]) and similarly to humans, a mental model
means an internal representation of a situation and
for agents provides a cognitive structure that con-
nects and extends the notion of individual goals
and needs to a team context [12].

Although the use of an SMM is proven to be an
effective method to teach agents how to collabo-
rate, using a centralized method provides us with
a similar, more simpler approach and fundamen-
tally collaborative agents. A centralized approach
aims at providing a complete scheme of the gen-
eral current state [13] (intrinsic communication) to
all agents as well guaranteeing that by executing
coordinated joint actions, the best action for both
agents (collaboration) is always chosen.

The work presented in this Subsection served
as an inspiration on how to create our auto-
mated agents and have them inherently act in both
our Desired (collaborative) and Undesired (non-
collaborative) behaviours.

3. Methodology
In this section, we will describe the approach used
to create, detect and analyse behaviour in each
scenario and a detailed explanation of the two en-
vironments used to test our solution. For both envi-
ronments we will detail the map designing process,
the different architectures of the automatic agents,
the algorithms implemented to train the agents as
well the optimization methods for said training. We
will also present a description of the real-life users
playtesting experiment made with the Lab Recruits
game.

3.1. Behaviour Comparison Approach
In a software testing method the main premise is
to check if the software reaches its main purpose,
the Design Goal (DG). For a game developer the
DG can be to create an engaging experience, for
a developer of an intelligent tutoring system a DG
could be to ensure that the students acquire the
knowledge components and for a developer of a
serious game for team training simulation, the DG
may be that the users work as a team. Although
this is strongly related to regular software testing,
the main difference is that in our case the Design
Goal can not be specified only in terms of logic
properties of the software but also need to take into
account human factors.

3.1.1 How to define the Design Goals?

Design Goals can be defined in many different
ways such as examples of the intended behaviour,
a reward/cost function that induces the behavior, a
set of rules and many others. Here are some ex-
amples:

• Behavioural traces - The DG can be directly

specified via designer provided demonstra-
tions of the desired behavior as well as dif-
ferent behaviours that are to be tested. For
instance if the DG is to train users on how to
work as a team, the designer might provide
traces of a group of people working as a team
and traces of people not working as a team.

• Consequential descriptions - Instead of focus-
ing directly on the behaviour, the DG can be
a specification of the consequences the be-
haviour must have. Those consequences can
be external or internal to the user. For in-
stance, if the DG is to provide an engaging
simulation experience, the designer might pro-
vide a description of the envisioned emotional
state of the user.

• Goal descriptions - Another alternative way is
to provide the goal of the behaviour and not
the behaviour itself. In a reinforcement learn-
ing perspective, while the behavioural descrip-
tions provide the policy, the goal description
will provide the reward.

In this work, our Design Goal is to have
agents/real-life users playing in a collaborative
manner. For this we want to check if it’s possible to
distinguish collaborative and non-collaborative be-
haviours in different scenarios by comparing Be-
havioural Traces.

3.1.2 How to test a scenario?

We will now understand how we can test if a given
scenario achieves a desired Design Goal.

Considering that some DG are very abstract
there are numerous situations where we cannot
guarantee if a DG is achieved, but, in most cases,
we can determinate if a DG is not achieved. A clear
example is if our DG is to understand if a user can
learn basic arithmetic’s. If we present a user with
(2⇥2+2) and he responds 6, although is the correct
answer, we are still not sure if the user understood
that ⇥ has priority in relation to +.

Meaning that for any of the different ways to
specify the Design Goals we must get a set of be-
haviours that achieve the desired goals ⇡

g

and an-
other set that does not verify the design goals ⇡

ḡ

.
Figure 1 explains this difference. On the left side

we have a system that given only a desired be-
haviour is able to decide if given scenarios fulfilled
the DG or not, but, like we’ve seen, this doesn’t al-
ways work. Whereas on the right side we consider
that by having the definition of the desired behav-
ior and the undesired behavior allows the system
to then decide if not only the DG is fulfilled but also
if the non DG (¬DG) is not.

3

Figure 1: How to test a scenario

Given this difference, our approach is based on
testing each scenario on the DG and on a specifi-
cation of ¬DG

2 to determine if we can distinguish
them and order the scenarios on their ability to dif-
ferentiate both behaviours.

3.2. Squary-Shappy
In order to perform initial tests to our approach,
we started by creating our own simulation gym, a
Python based program called Squary-Shappy that,
due to its simplicity, served as the initial environ-
ment to create automatic agents and implement
our approach. The Squary-Shappy scenarios sim-
ulate a 2D object collecting game where agents
roam around the map trying to eat as much food
as they find. The food is positioned around the map
and does not regenerate, meaning the food is lim-
ited by the number initially deployed. The maps are
also all designed in a closed room format, mean-
ing the agents cannot move out of the established
bounds.

3.2.1 Map Designing

Our initial work in map designing consisted of cre-
ating 1-Dimensional maps to test our agents. Since
1-Dimensional maps are somewhat restrictive we
quickly moved on to 2-Dimensional maps. The
maps in the Squary-Shappy environment were de-
signed in individual .txt files which allowed us to
quickly create new scenarios and alter existing
ones, since that, at their core, they were a simple
deterministic matrix using a basic symbol format:

• ’.’ (dot) - Represents empty locations where
the agents could move to.

• ’1’ - Represents walls, objects that agents can
not pass through, visually identified by a black
square.

• ’2’ - Represents the objects (food) that agents
would aim to collect, providing them with a
positive reward, visually identified by a green
square.

2Although there are clearly many different amounts of possi-
ble ¬DG, for specific problems, such as ours, the main effects
can be easily identified.

• ’3’ - Represents the location of the first agent,
visually identified by a blue square.

• ’4’ - Represents the location of the second
agent, visually identified by a red square.

1 1 1 1 1 1 1 1 1 1

1 2 1

1 3 . . . 1

1 1

1 1

1 4 . . . 1

1 1

1 2 1 2 1

1 1

1 1 1 1 1 1 1 1 1 1

(1)

Figure 2: Squary - Shappy: 2D map matrix example

This method of designing the maps as matrices
also brought advantages when it came to train the
agents, since any change/action/movement per-
formed in the map could be made by simply chang-
ing values in matrix, a process that has very low
processing cost.

In order to create a visual aspect of the sim-
ulation we used the Pygame 3 module which in-
cludes a number of easy to use libraries for com-
puter graphics and game designing in Python.

The maps created for this work in this environ-
ment were the following:

Figure 3: Squary - Shappy: Scenario 1

3https://www.pygame.org/

4

Figure 4: Squary - Shappy: Scenario 2

Figure 5: Squary - Shappy: Scenario 3

3.2.2 Agents

To automatically create the previously mentioned
desired and undesired behaviours we started by
developing two different agent architectures and
training them using RL.

To define our Desired Behaviour, we imple-
mented as an agent architecture a centralized
method. The Centralized agent type means that all
agents are a part of a shared mind that takes into
account the effort made by every single agent, re-
wards the agents as a unit, not individuals and fun-
damentally makes them function as an optimal col-
laborative group/team. We choose to use the cen-
tralized architecture since our goal is not to teach
agents to collaborate, but to create inherently col-
laborative and coordinated agents. On the other
hand, our Undesired Behaviour implies that our
agents work in a completely individual manner, fo-
cusing on their own personal gain. This behaviour
was achieved implementing the Individual agents
architecture. For these type of agents, each have
an individual ”mind” and make decisions based on
their own personal gain, meaning they prioritize ac-
tions that provide themselves with the highest in-
dividual reward and don’t take into consideration
other agents.

In order to train the agents we chose to use
a simple Reinforcement Learning approach called
Markov Decision Process (MDP) with Q-Learning.

An MDP is predicated on the Markov Property
”The future is independent of the past given the
present” which implies that in a RL problem, the
next state N+1 only depends on the current state N.
The MDP with Q-Learning algorithm cycle is easily

explained in Figure 6.

Figure 6: MDP with Q-Learning

This image shows that during the training,
agents observe their current state and chose an
action to execute. They will then receive a reward
(positive or negative) and observe the state of the
environment after performing the selected action.
This information will then be used to update the
Q-Table, the agents ”brain”, by means of the Q-
Learning formula:

Q(s, a) = Q(s, a)+↵⇥[r+�⇥max (Q(s

0
, a

0
))�Q(s, a)]

Where Q(s,a) represents the Q-value of the per-
formed action in the current state, ↵ represents the
learning rate, r represents the reward, � the dis-
count factor of future rewards and max(Q(s’, a’))
the maximum Q-value for any action of the next
state.

The scenario was formulated into a RL problem
by defining the MDP parameters as such:

• States: Like we previously mentioned, in these
maps the objective is eat as much food as pos-
sible. Since the agents are only be able to
move one step at a time and the food posi-
tion is static, we decided to describe the state
of the environment using the positions of both
the agents (all agents in the Centralized type
and own position in the Individual) as well as
all the food objects. Every time a food object
was picked, that position was removed from
the state.

– Individual: {PosAgent, PosFood1, Pos-
Food2, PosFood3,...}

* Example: {<2, 2>, <1, 1>, <4, 8>,
<6, 1>, ...}

– Centralized: {PosAgent1, PosAgent2,
PosFood1, PosFood2, PosFood3, ...}

* Example: {<2, 2>, <6, 3>, <1, 1>,
<4, 8>, <6, 1>, ...}

5

• Actions: In the Squary-Shappy gym, the
agents don’t possess any type of pathfinding
method and since the simulation made in a
simple 2D matrix, the agents can only perform
the low-level actions. For the Centralized type
agents, their actions were formulated in pairs.

– Individual:

* NOTHING = Stay in the same place.

* UP = Take one step up.

* DOWN = Take one step down.

* LEFT = Take one step left.

* RIGHT = Take one step right.

– Centralized:

* [NOTHING, NOTHING] = Both
agents stay in the same place.

* [NOTHING, UP] = First agent stays in
the same place and the second one
moves one step up.

* ...

* [RIGHT, RIGHT] = Both agents take
one step right.

• Rewards: For the rewards we took a simple
approach. Every time an agent picked up a
food object they were positively rewarded. If
the agent didn’t move they didn’t receive any
reward, positive or negative. For every step
an agent took, they would get a small punish-
ment, negative reward. The reward system for
the Centralized agents functioned as a collec-
tive, meaning all agents were either rewarded
or punished the combined amount, whereas
for the Individual type agents, they were at-
tributed their own rewards.

i f (Agent c o l l e c t s Food)
reward = +100

else i f (Agent doesn ’ t move)
reward = 0

else
reward = −1

Since the scenarios were considerably small
and easy to solve, both types of agents, Cen-
tralized and Individual, performed 100.000 training
episodes which would end when the agents either
completed the objective, collecting all of the food,
or performed the maximum number of centralized
actions, 64.

The agents exploration-exploitation factor for de-
cision making was based on a value 2 [0, 1]. The
probability of making random decisions started as
1 and decreased by a ratio of 1

totalEpisodes

, mean-
ing that in the first episode, the agents had com-
pletely random decision making (maximum explo-
ration) and during the course of the training those

decisions started to be made less and less ran-
domly, until the final episode where the agents had
a random decision probability of ⇡ 0, which means
maximum exploitation.

3.3. Lab Recruits
Upon creating the Squary-Shappy gym and imple-
menting our approach in it, we moved on to a more
high-end environment, the Lab Recruits game de-
signed by the University of Utrecht for the iv4XR
project. In this game, the players objective is to
click the target green button(s). For this to happen,
the characters have to roam around the maps and
click red buttons to open doors and access new
rooms. Contrary to the Squary-Shappy food ob-
jects, these buttons do not disappear and could be
clicked unlimited times, turning them ON/OFF to
open/close doors.

For the Lab Recruits game, the iv4XR framework
ran all its tests and simulations in a Unity environ-
ment. Every move/action/change done in the map
had to be passed to the Unity application through
a socket, applied using the Unity game physics
engine and relayed back to the Java application
through the same socket.

Figure 7: iv4XR Framework to Unity architecture

Although this method provides more accurate
data regarding to map positioning, physics, among
others, the amount of time needed to train agents
in real-time would be too much. For this reason,
and since for this work and in our scenarios the
Unity physics could be considered meaningless,
we decided to create a model of the map that could
be simulated in a 2D matrix, similar to the Squary-
Shappy environment, to help speed up the agents
training process and still provide the wanted poli-
cies.

3.3.1 Map Designing

In the Lab Recruits gym, the map designing fol-
lowed a very similar approach to the one we took
in the Squary-Shappy scenarios, meaning that we
used a clear symbol format, previously defined by
the University of Utrecht, that could easily build/al-
ter scenarios in a .csv file. Although the game
itself (Unity executable) possessed physics, the
maps were designed as a 2D matrix using discrete
units which also lead for the agents to train in that
manner, meaning that 1 step in the agents train-
ing meant several physical steps to go through the
same distance in the game.

These were the three maps created for the Lab
Recruits experiments:

6

Figure 8: Lab Recruits: Scenario 1

Figure 9: Lab Recruits: Scenario 2

3.3.2 Agents

For this environment, we used the same approach
for the agents. We again developed Centralized
agents who are a part of a shared mental mind and
Individual agents that have their own individual de-
cision process and only take into account their own
state and benefit.

The development and training of the agents was
done inside the Java iv4XR framework instead of
creating a python module 4 since an MDP is a fairly
easy algorithm to implement in Java when com-
pared to pairing a Python module to the iv4XR Java
framework.

In order to train the agents, we once again used
an MDP with Q-Learning since it provided simplic-
ity in the implementation and it had also demon-
strated good initial results in the Squary-Shappy
scenarios.

Like previously explained, instead of training the
agents using the game itself, we developed a
model to simulate the environment of the Lab Re-
cruits. For the agents training we defined the fol-
lowing MDP parameters:

• States: In the Lab Recruits games, the agents
interact with buttons to open and close doors
until reaching the target button. Since the
state of the doors (open or closed) are the
only visual feedback that real life players have,
we choose to use this as part of the agents
MDP state. The doors internal state can be
described as:

4Python is a more used commonly language for Machine
Learning due to the large number of libraries, documentation
and its simple coding language syntax.

Figure 10: Lab Recruits: Scenario 3

– 0 = Door is closed.
– 1 = Door is open.

Appending this to the agents position resulted
in the following policy states:

– Centralized: {PosAgent1, PosAgent2,
IntStateDoor1, IntStateDoor2, ...}

* Example: {<3, 0, 8>, <10, 0, 3>, 0,
1, ...}

– Individual: {PosAgent, IntStateDoor1,
IntStateDoor2, ...}

• Actions: Although the iv4Xr had a built-in
pathfinding system with high-level actions we
decided to use the basic low-level actions and
added one specific action related to the Lab
Recruits game, pressing on a game button.
The agents could perform the following ac-
tions.

– Individual:

* NOTHING = Stay in the same place.

* UP = Take one step up.

* DOWN = Take one step down.

* LEFT = Take one step left.

* RIGHT = Take one step right.

* PRESS = If the character is on top of
a button, press it.

For the Centralized type agents to act coor-
dinatively, they’re actions were again in pairs
with all possible permutations.

– Centralized:

* [NOTHING, NOTHING] = Both
agents stay in the same place.

* [NOTHING, UP] = One agent stay in
the same place and the other moves
one step up.

* ...

* [PRESS, PRESS] = Both agents try
to press buttons.

7

Figure 11: MDP + Dyna-Q

• Rewards: Agents will get positively rewarded
for reaching the target (turning ON a target
button), no reward for doing nothing and a
negative reward for all other actions. The only
thing we had to make sure was, since the
buttons could be clicked unlimited times, the
agents would only get a positive reward the
first time a target button was turned ON.

i f (Agent tu rns ON TargetBut ton and
i s F i r s t T i m e)

reward = +100
else i f (Agent does noth ing)

reward = 0
else

reward = −1

Contrary to the agents training made in Squary-
Shappy, since the Lab Recruits game presented
more complex scenarios with different sizes, we did
not defined a defined maximum number of train-
ing episodes, but instead we evaluated the agents
performance (number of steps until reaching the
objective) and ended the training once that value
converged.

3.3.3 Optimizations

One difficulty that we encountered in the Lab Re-
cruits game was the time taken to train the agents,
even using a 2D matrix model representation of the
game. This could attributed to the size of the maps
and the large number of combinations between all
states and actions.

In order to try speed up the process, we im-
plemented an optimization method for the agents
training process, the Dyna-Q.

Dyna-Q
The Dyna-Q algorithm, shown in Figure 11, aims

at collecting the agents past experiences and us-
ing them to further update the policy without the
need for the agents to physically perform an ac-
tion in the simulation world. Upon each cycle (after

each Q table update) the agents save their experi-
ence by updating a Transition table. The Transition
table contains the information that if an agent is in
a state S and performs action A, then the result-
ing state will be S’ and will receive reward R’. Upon
each training episode, the agents enter a state of
”hallucination” 5 where they use the information in-
side the table to virtually replay several random ex-
periences and update the Q table with the resulting
values.

3.3.4 User Playtesting

Although the purpose of our work is to help de-
velopers test scenarios that need to promote col-
laborative behaviours without the need of real-life
users, in order to understand if the agents poli-
cies could be deemed as ”human-like behaviour”,
we decided to have a playtesting experience with
users to corroborate, or not, the agents behaviour
and our results.

An online form was created containing all the in-
formation regarding the experience and a link to
download the game. To try and create the same
environment as our automated agents, users, in
pairs, were asked to play each of the scenarios
presented in Subsection 3.3.1 three times (since
agents had several training episodes), while try-
ing to reach the objectives as fast as possible and
also avoiding having any type of communication
between themselves. After completing all the sce-
narios, users received a randomly generated ID
in-game to insert on the form and continue to the
questions section.

In the questionnaire and in order to minimize
possible opinion persuasion between users, they
were asked to respond the same questions but in
individual sections. The questions selected were

5Hallucination - Commonly used to describe a Dyna-Q cycle
since no actions are done in the real world, only the information
in the agents memory (Transition table).

8

created to help understand the internal decision
process from the users to verify our systems ac-
curacy. The questions, repeated for each scenario,
were:

• When playing Scenario X, did you feel that
you played as a team, played in an individu-
ally manner or neither? - To help us deter-
mine if our system was identifying the correct
behaviour when comparing the users to our
agents, or if our agents were indeed simulat-
ing human-like behaviour.

• Did you had any communication while playing
Scenario X? If so, what was it about? - To ver-
ify if the main condition of no communication
was followed.

• When playing Scenario X, describe your ap-
proach. Were you just trying to finish it as fast
as possible? Were you exploring the map?
- To understand if the users behavioural was
made with the same objective as the agents,
to finish as fast as possible.

In the end we also asked each user to order the
Scenarios by how they promoted collaborative be-
haviour, 1 being the Scenario that promoted the
most and 3 the Scenario that promoted the least.
Although this is a high relative question, we thought
it would be interesting to then compare to the re-
sults we got from the agents.

This playtesting experience was made entirely
online meaning we could not properly guarantee
the exact same playing parameters for the agents
and users regarding communication, understand-
ing of the game controls and the scenarios objec-
tive, among others.

3.4. How to distinguish behaviours?
Like we previously explained, our main objective is
to help developers of collaborative inducing soft-
ware to test their scenarios by comparing be-
havioural traces of a DG and a ¬DG to under-
stand if the scenarios allow to distinguish collabo-
rative and non-collaborative behaviour. In order to
achieve that, we created a way of comparing any
behavioural trace with the Centralized agents pol-
icy (DG) and the Individual agents policies (¬DG).

Many forms of comparison could be made.
Imagining that we have a testing behavioural trace,
a possible way was to simply count at every game-
state if the action made was the best action pos-
sible according to each policy, Centralized and In-
dividual, and in the end we could identify if a be-
havioural trace followed the DG or the ¬DG. But
what if the actions made were not the best pos-
sible actions at each game-state, but the second
best? Or the third best? We had to define a voting

system to make sure every action, best or not, was
accounted for.

The voting system was made using the following
process. For each game-state and for both poli-
cies, each action was ranked from best to worst.

• Best action = 1.

• Worst action = size of policy’s Action space.

After making said ranking, for every game-state
in a provided testing behavioural trace, a vote of
similarity with the Individual policy will be made
with the following equation:

V(s,a1,a2) = e

� r(s,a1)
size(A)⇥

r(s,a2)
size(A) (2)

Where s represents the current state, a1 the ac-
tion made by character1, a2 the action made by
character2, r(s, a) represents the corresponding
action ranking in the current state, size(A) the size
of the individual Action space and V

s,a1,a2 repre-
sents the vote value for the set of actions in the
current state.6

Regarding the vote of similarity for the Central-
ized Policy, an equivalent equation is used:

V(s,a) = e

� r(s,a)
size(A) (4)

Where again s represents the current state, a

represents the centralized action (action pair) of
both characters, r(s, a) the corresponding action
ranking in the current state and size(A) the size of
the centralized Action space.

After summing each voting values, for both poli-
cies, during a provided game run, we normalize
them in range [0,1] and we get a general similarity
value to both policies, an indication if the provided
game behavioural trace is more similar to the DG
or the ¬DG and with which difference.

4. Results
In this chapter, we will explained the results gath-
ered from our experiments in both environments,
the Squary-Shappy simulation and the Lab Re-
cruits game.

4.1. Automated agents
We began our experiments using our own custom
simulator, Squary - Shappy. Like we previously ex-
plained, in this environment the objective is for two
agents to roam around the map and eat the all the
food objects.

6An example of this is if in a particular state character1 per-
formed the best action and character2 performed the second-
best action according to the Individual Policy, the value received
for that game-state, with an action space with size 4, would be:

V(s,a1,a2) = e�
1
4⇥ 2

4 ⇡ 0.88 (3)

9

In order to understand if we could differentiate
the DG and the ¬DG, we used both agents types
optimal behaviour (always perform the best ac-
tions) when solving each of the three scenarios
presented in Subsection 3.2.1 and, using the voting
system, compared those game runs to both poli-
cies, Centralized and Individual. These were the
results gathered:

Figure 12: Results: Squary-Shappy Scenario 1

Figure 13: Results: Squary-Shappy Scenario 2

Figure 14: Results: Squary-Shappy Scenario 3

Moving to the Lab Recruits game where agents,
and now also real-life users, had to click on a se-
quence of buttons to achieve each maps final ob-
jective, we ran each agent type optimal behaviour
on the three Lab Recruits scenarios referred in
Subsection 3.3.1, compared them to both policies
and we got the following results:

Figure 15: Results: Lab Recruits Scenario 1

Figure 16: Results: Lab Recruits Scenario 2

Figure 17: Results: Lab Recruits Scenario 3

By analysing these comparison results, from
both environments, we can extrapolate several ob-
servations.

Like expected, each agent type had a maxi-
mum similarity value (1) to their policies, meaning
that the Centralized agents optimal behaviour per-
formed the best actions at every game-state ac-
cording to the Centralized policy and the same oc-
curred for the Individual agents optimal behaviour
and the Individual Policy.

Since our objective at its core is to evaluate sce-
narios,we can observe that by averaging the dif-
ference between the similarity values in each sce-
nario, we can obtain an order on how the scenar-
ios allow to distinguish the DG and ¬DG, from best
(highest value) to worst (lowest value):

For the Squary-Shappy environment, we have:

Scenario1

SS

=

|1� 0.91|+ |0.72� 1|
2

= 0.185

(5)

Scenario2

SS

=

|1� 0.95|+ |0.76� 1|
2

= 0.145

(6)

Scenario3

SS

=

|1� 0.78|+ |0.62� 1|
2

= 0.3 (7)

Meaning that, Scenario 3 is the map where we
can more easily differentiate if the agents optimal
behaviour followed the Centralized Policy or the In-
dividual Policy, followed by Scenario 1 and Sce-
nario 2.

By applying the same method to the Lab Re-
cruits scenarios we have:

Scenario1

LabR

=

|1� 0.92|+ |0.59� 1|
2

= 0.245

(8)

Scenario2

LabR

=

|1� 0.91|+ |0.83� 1|
2

= 0.13

(9)

Scenario3

LabR

=

|1� 0.93|+ |0.47� 1|
2

= 0.3

(10)
And by coincidence, we realize that the best Lab

Recruits scenario to distinguish both behaviours is
also Scenario 3, followed by Scenario 1 and ulti-
mately Scenario 2.

4.1.1 Lab Recruits - Users playtesting

Like we previously mentioned, in order to corrob-
orate if the results gathered from our automated
agents and our approach could be used to simulate
human-like behaviour, we performed a playtesting

10

where we asked users to play each of the Lab
Recruits scenarios three times and to individually
answer a questionnaire regarding their behaviour
whilst playing. For comparison purposes, the re-
sults here presented are only related to the third
try on each scenario. This way we feel that we
somewhat approximate the playing environment
of the agents (which had training episodes be-
fore reaching the optimal behaviour) to the users
(considering their first two tries as their ”training”).
We receive 13 playtesting experiences and ques-
tionnaires responses, totaling 26 individual partici-
pants. Here we present the results.

Regarding the last question of ordering the Sce-
narios by how they promoted collaborative be-
haviour, Scenario 3 was considered the one that
most promoted, followed by Scenario 1 and ulti-
mately Scenario 2.

This order, chosen by the users and equal to
the one calculated by our approach, is also backed
up by the users answers on whether they played
as a team (collaboratively) or as individuals (non-
collaboratively) in each of the scenarios, since in
Scenario 3 we had the highest percentage of users
that responded that they played in a collaborative
behaviour with 77% and the remaining users, 23%
responding they played in a non-collaborative man-
ner. In Scenario 1, 65% of the users said that
they played in a collaborative manner, while the
other 35% responded that they played with a non-
collaborative behaviour. Finally in Scenario 2 we
had the lowest difference of answers, since 54% of
the users answered that they played in a collabora-
tive manner and the remaining 46% of the users re-
sponded that they played with a non-collaborative
behaviour.

In order to understand if our agents could be
considered proper representatives of collaborative
and non-collaborative human-like behaviour in the
scenarios, we decided to compare each of the be-
havioural traces from the users playtesting expe-
riences to the Centralized and Individual policies
using the same voting formula used to compare
the agents optimal behaviours to the same poli-
cies. Unfortunately we were not able to properly
label the users behaviours, since our voting sys-
tem always attributed the Individual policy with a
higher vote of similarity. This result can attributed
to a combination of several possible reasons.

One of the possible reasons is the differences
between the agents and the users playing environ-
ment. Although we tried to approximate the users
playing environment to the agents, some variables
could not be fully guaranteed. Even giving users
three tries at each scenario and only comparing
the third try, we cannot be sure that users truly
understood the scenarios objective. Although in-

dicating users not to communicate, since the ex-
periment was made online and with users playing
on the same computer, next to each other, the no
communication rule can not be guaranteed, plus
some users responded in the questionnaire saying
that they did communicate regarding which person
should open a door, who should do what, among
other planing topics.

One other possibility is the voting system not
making a valid comparison. Although the vot-
ing system did identified the agents optimal be-
haviour to the proper policy, the same did not hap-
pened when comparing the users to the policies,
this indicates the voting system could need to be
changed/improved.

Another possible reason is the Centralized
agents not correctly simulating human-like be-
haviour. Although the use of a centralized policy
guaranties that the agents behave with total coor-
dination, having the combined effort/reward of the
team in ”mind” and acting in the fastest and most
optimal way of collaboratively solving each sce-
nario, it is impossible to guarantee that this pol-
icy has incorporated all the collaborative behaviour
possibilities humans may have in each scenario.

5. Conclusion and Future Work
Aiming at evaluating designed scenarios on their
capability of allowing and distinguishing collabora-
tive and non-collaborative behaviours, we devel-
oped two types of automated agents to represent
the Design Goal, centralized agents, and the non-
Design Goal, individual agents, in different sce-
narios from the Squary-Shappy simulator and the
Lab Recruits game. Upon training said agents
we used a voting system to compare each agents
type optimal behaviour when solving the scenar-
ios to both policies. This comparison allowed us to
observe in each scenario if we could differentiate
the two behaviours and also order the scenarios
by their ability of distinguishing collaborative and
non-collaborative behaviours. For the Lab Recruits
game we also had a playtesting experience with
real-life users where, although we could not prop-
erly label each users behavioural trace to a collab-
orative or non-collaborative behaviour, we did man-
aged to corroborate our scenarios order using the
questionnaire answered by the users.

The results gathered from this work gives us
an indication that this approach of using a defi-
nition of a Design Goal and a non-Design Goal
as behavioural traces from automated agents al-
lows to analyse the scenarios ability to allow and
distinguish collaborative and non-collaborative be-
haviours, which can provide developers with initial
data regarding their scenarios. We also believe
that this approach could be extended to analyse

11

other types of behaviour.
There are several possibilities for future work.

We believe that although analysing the actions
made by RL agents shows promising results,
we acknowledge that defining the Design Goals
and the non-Design Goals using Inverse Rein-
forcement Learning to more accurately represent
human-like behaviour could achieve more accurate
results. Another possibility is the combination of
this approach to the analysis of agents and users
internal state. This could allow developers to not
only determine if their scenarios are being devel-
oped the intended way but also have a more spe-
cific indication of which areas and components of
the scenarios are affecting the agents and users
decision making.

References
[1] D. Bagshow, M. Lepp, and C. Zorn. Interna-

tional research collaboration : Building teams
and managing conflicts. Conflict Resolution

Quarterly, 24:433–446, 2007.

[2] F. De Mesentier Silva, S. Lee, J. Togelius, and
A. Nealen. Ai-based playtesting of contempo-
rary board games. pages 1–10, 08 2017.

[3] S. J. Fiore S.M. Process mapping and shared
cognition: Teamwork and the development of
shared problem models. In F. S. Salas E.,
editor, Team Cognition: Understanding the

Factors that Drive Process and Performance,
pages 133 – 152. American Psychological,
2004.

[4] C. Harris, A. Barnier, and J. Sutton. Consen-
sus collaboration enhances group and individ-
ual recall accuracy. Quarterly journal of exper-

imental psychology, 65:94–179, 08 2012.

[5] E. Harskamp and N. Ding. Structured col-
laboration versus individual learning in solv-
ing physics problems. International Journal

of Science Education - INT J SCI EDUC,
28:1669–1688, 11 2006.

[6] C. Holmgård, M. Green, A. Liapis, and J. To-
gelius. Automated playtesting with procedural
personas with evolved heuristics. IEEE Trans-

actions on Games, 02 2018.

[7] J. Mathieu, T. Heffner, G. Goodwin, E. Salas,
and J. Cannon-Bowers. The influence of
shared mental models on team process and
performance. The Journal of applied psychol-

ogy, 85 2:273–83, 2000.

[8] L. Mugrai, F. de Mesentier Silva, C. Holmgård,
and J. Togelius. Automated playtesting of
matching tile games. CoRR, abs/1907.06570,
2019.

[9] S. Rahman, I. Endut, N. Faisol, and S. Pay-
dar. The importance of collaboration in con-
struction industry from contractors’ perspec-
tives. Procedia - Social and Behavioral Sci-

ences, 129, 05 2014.

[10] L. Rose. Interprofessional collaboration in the
icu: how to define?*. Nursing in Critical Care,
16(1):5–10, 2011.

[11] J.-W. Strijbos, R. Martens, W. Jochems, and
N. Broers. The effect of functional roles
on group efficiency. Small Group Research,
35:195–229, 08 2004.

[12] P. Van den Bossche, W. Gijselaers,
M. R.Segers, G. Woltjer, and P. Kirschner.
Team learning: Building shared mental mod-
els. Instructional Science, 39:283–301, 05
2011.

[13] M. Weerdt and B. Clement. Introduction to
planning in multiagent systems. Multiagent

and Grid Systems, 5:345–355, 12 2009.

[14] J. Yen, X. Fan, S. Sun, T. Hanratty, and
J. Dumer. Agents with shared mental models
for enhancing team decision makings. Deci-

sion Support Systems, 41(3):634 – 653, 2006.
Intelligence and security informatics.

[15] J. Yen, X. Fan, S. Sun, R. Wang, C. Chen,
and K. Kamali. Implementing shared mental
models for collaborative teamwork.

12

