

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

iv4XR – WP3 – D3.3

Version 1.8

December 2021

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

1

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2021

Actual Date XX/12/2021

Document Author/s Tanja Vos (UPV), Wishnu Prasetya (UU), Fitsum Kifetew (FBK),

Fernando Pastor Ricós (UPV), Alexandre Kazmierowski (THA-

SIX), Joseph Davidson (GA), Pedro Fernandes (INESC-ID),

Jeremy Cooke (GWE)

Version 1.8

Dissemination level Public

Status Draft

Type OTHER

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

2

Document Version Control

Version Date Change Made (and if appropriate reason

for change)

Initials of

Commentator(s) or

Author(s)

1.0 17/11/2021 Initial document structure and contents TV, FP

1.1 2/12/2021 Discuss content and add tasks description
TV, WP, FK, FP, AK,

JD, PF, JC

1.2 8/12/2021 Added Task 3.4 Coverage section FK

1.3 9/12/2021 Added Task 3.1 Specifying Tests sections WP

1.4 9/12/2021 Added Task 3.5 Multi Agent section FP, WP, AK, JD, PF

1.5 13/12/2021 Added Task 3.2 Explorative FTA section FP

1.6 14/12/2021 Added Task 3.2 Goal Solving FTA section WP

1.7 15/12/2021 Update Task 3.2 Goal Solving and Task 3.4 AK

1.8 16/12/2021 Update task 3.3 TV

1.9 17/12/2021 Overall Integration picture TV, FP

Document Quality Control

Version

QA

Date Comments (and if appropriate reason for

change)

Initials of QA Person

1.0 XX/12/2020 Initial comments and section assignment

1.9 29/12/2021 Few corrections and comments AS

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

3

1.9 29/12/2021 Review and edits IS

Document Authors and Quality Assurance Checks

Author

Initials

Name of Author Institution

TV Tanja Vos UPV

WP Wishnu Prasetya UU

FK Fitsum Kifetew FBK

FP Fernando Pastor UPV

AK Alexandre Kazmierowski THA-SIX

JD Joseph Davidson GA

PF Pedro Fernandes INESC-ID

JC Jeremy Cooke GWE

AS Angelo Susi FBK

IS Ian Saunter GWE

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

4

TABLE OF CONTENTS

Executive Summary 5

Acronyms and Abbreviations 5

Overall concepts, architecture, design Functional Test Agents (FTAs) 6

Task 3.1 : Specifying Tests 7

Task 3.2 : Goal Solving Agents 10

Task 3.2 : Exploration Agents 13

Task 3.3 : Dealing with Hazardous Elements 18

Task 3.4 : Coverage 19

Task 3.5 : Multi Agent Testing 22

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

5

EXECUTIVE SUMMARY

This deliverable D3.3 is of type OTHER, it describes the status of the 2nd prototype of Functional

Test Agents (FTAs) and the progress made during the second year related to the FTAs. The real

delivery is the software which is available on a github repository.

In this deliverable we will summarize the overall concepts, architecture, design, and technical

choices. With the intent to give a clear overview for the reviewers of the work that has been done

in WP3, we will describe per task:

● Short introduction to the task

● What has been done

● Where the result can be found (link to github, zenodo, videos) and how to use them

● What is planned for the 3rd year

ACRONYMS AND ABBREVIATIONS

FTA Functional Test Agent

SUT System Under Test

XR Extended Reality

AI Artificial Intelligence

WOM World Object Model

API Application Programming Interface

RL Reinforcement Learning

DRL Deep Reinforcement Learning

DSL Domain Specific Language

TSL Test Specification Language

LTL Linear Temporal Logic

MDP Markov Decision Process

MBT Model Based Testing

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

6

OVERALL CONCEPTS, ARCHITECTURE, DESIGN FUNCTIONAL TEST AGENTS

(FTAS)

Figure 1: Different types of FTAs in iv4XR.

Two types of FTA’s are being distinguished in WP3:

● The first type of agent makes deliberations to choose the appropriate strategies that will

allow it to do goal-solving (the left circle in Figure 1).

● The second type of agent is intended to test the functionality of the XR system using

exploration (the right circle in Figure 1).

These FTAs are able to test the SUTs from WP5, by using the ApLib and the Core from WP2, as

is also shown in Figure 1.

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

7

TASK 3.1 : SPECIFYING TESTS

Short
introduction to
the task

This task aims to develop a test specification language that would allow

developers to abstractly specify complex testing tasks.

What has been
done until the
second year:
results

The test specification language has been implemented as a domain specific

language (DSL) embedded in the language Java. It has also been tested with

various case studies.

An example of a testing task formulated using this DSL is shown below1:

SEQ(interacted(e1),
 interacted(e2),
 refreshed(d),
 assertTrue_(world → world.getEntity(d)
 .getProperty("isOpen"))
)

The task says that the agent should interact with an in-world entity e1 and then

e2, and then it should refresh its knowledge of the state of another entity called

d (e.g. by walking to a place near to d so that it can see it to refresh what it

knows about it). And then the agent should check the asserted property,

namely that this d should be “open” (e.g. d could be a door, which can be

opened and closed). If the assertion holds then the test is passed, else it is

violated.

We can see that the formulation of a testing task consists of two parts:

1. The part for specifying what to test (blue); that is, for specifying the

correctness properties that should hold..

2. The part for specifying how to test (yellow); that is, for specifying

high level steps to be taken to take the SUT to states where it is

sensical to sample the correctness properties.

To achieve abstraction, from the testers’ perspective tasks are formulated

declaratively as goals. A goal only specifies what needs to be achieved. E.g.

in the above example, interacted(e) specifies that the entity e should be

interacted; it does not say how to get to e in the first place, which may involve

some complex navigation through a maze. But indeed, the executing test-

1 The example is presented in a more abstract syntax than the actual concrete syntax. Samples of actual

tests can be found in the iv4xrDemo project (https://github.com/iv4xr-project/iv4xrDemo), e.g. in the test
src/test/java/agents/demo/RoomReachabilityTest.java.

https://github.com/iv4xr-project/iv4xrDemo

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

8

agent will ultimately have to know how to solve the goals given to it. This is

discussed in Task 3.2.

Further abstraction can be obtained by having an algorithm that can fill in a
large part of the how-to-test part (the yellow part in the above example). This
is also discussed in Task 3.2, e.g. by using an on-line search algorithm,

As a new feature, we have also added Linear Temporal Logic (LTL)2 to the
test specification language. In the previous testing task example (above), the
correctness property is formulated as a state predicate, stating that the state
of the in-world entity d should be as such that its isOpen property is true when
the agent observes it. In contrast, an LTL formula is a predicate over a
sequence of states, e.g. this could be the sequence of states that are passed
during the execution of a testing task. With such a property we can assert that
throughout the execution the value of a certain variable is always positive, or
that the value of another variable should start as 0 but eventually it should
become positive. Proving LTL is essential for WP4, because often emotion is
not a property of a state, but rather a property of an execution (e.g. the agent
should eventually feel a certain emotion3).

Where are
these results
and how to
use them

User Documents. The Test Specification Language is actually part of the DSL
for formulating goals and tactics for agents, so they share the same underlying
concepts. More on the concepts of iv4xr agent programming can be found in
its Documentation page:

https://github.com/iv4xr-project/aplib/blob/master/README.md

User Reference.

1. The syntax of the DSL test specification language:
https://github.com/iv4xr-
project/aplib/blob/master/docs/manual/DSL.md

2. APIs Reference is provided as part of the APIs reference of the
Framework-core: :
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib
/apidocs/

The key classes implementing the DSL are AplibEDSL and iv4xrEDSL
in the package nl.uu.cs.aplib and eu.iv4xr.framework. The
implementation of LTL can be found in the class LTL and its subclasses
in the package eu.iv4xr.framework.extensions.ltl. We also provide an
extension of LTL called Bounded-LTL, which can be found in the class
BoundedLTL in the same package

2 For more about LTL, see e.g. Baier, Christel, and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.
3 If f is a state predicate, In LTL “Eventually” f is a sequence predicate that says that some state in the

sequence satisfies f, without being specific which state should that be (it does not have to be the current
state, or the next state etc, as long as some state in the sequence satisfies f).

https://github.com/iv4xr-project/aplib/blob/master/README.md
https://github.com/iv4xr-project/aplib/blob/master/docs/manual/DSL.md
https://github.com/iv4xr-project/aplib/blob/master/docs/manual/DSL.md
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

9

Usage Examples
1. A starting (simple) example of using the DSL is provided in the above

Documentation page of the Framework. Direct link:
https://github.com/iv4xr-
project/aplib/blob/master/docs/iv4xr/testagent_tutorial_1.md

2. Examples of the use of LTL are provided in the above Documentation
page of the Framework. Direct link:
https://github.com/iv4xr-
project/aplib/blob/master/docs/iv4xr/testagent_tutorial_3.md

3. A full example in the context of a realistic SUT can be found as part
of the iv4xrDemo project that demonstrates the use of iv4xr to test a
3D maze-puzzle game. The Demo project can be found here:
(https://github.com/iv4xr-project/iv4xrDemo. Look for example in the test-
example src/test/java/agents/demo/RoomReachabilityTest.java.

Implementation.
The Test Specification Language is part of the Framework-core, which can
be obtained here: https://github.com/iv4xr-project/aplib

For inspecting the code, the key classes that implement the DSL are
AplibEDSL and iv4xrEDSL. The implementation of LTL and Bounded-LTL can
be found in the classes LTL and BoundedLTL.

Publications:
Aplib: Tactical Agents for Testing Computer Games. Paper by Prasetya,
Dastani, Prada et al. Published in EMAS 2021,
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2

Task Status
overview and
plan for the
next year

The table below shows the task status and plan for next year.

◻ Completed. Only minor changes are expected for next year.

◻ Implemented, but need possibly major improvement.

D3.3 status Result (type) Planned for D3.4

Completed Embedded language for
formulating test goals and tactics.
(software)

Completed Embedded language for
formulating assertion-like
correctness properties. (software)

To be
improved

Embedded language for
specifying temporal correctness
properties. (software)

Investigating the use of
temporal properties to
formulate emotion-

https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_1.md
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_1.md
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_3.md
https://github.com/iv4xr-project/aplib/blob/master/docs/iv4xr/testagent_tutorial_3.md
https://github.com/iv4xr-project/iv4xrDemo
https://github.com/iv4xr-project/aplib
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

10

related requirements
(together with WP4)

TASK 3.2 : GOAL SOLVING AGENTS

Introduction

to the task

This task aims to develop algorithms to solve goals that are given to a test

agent. Test-related goals are usually related to getting the SUT to a certain state

that must be tested, or getting the test agent to a certain location in a virtual

world. One should take into account that the virtual world can be pretty complex,

with non-trivial layout and elements that can dynamically block access to certain

states. Without automated goal solving, the developers will have to manually

provide the sequence of subgoals to guide the agent to its final goal. This can

be tedious if the sequence is long, and has to be manually repaired as well if

the SUT is changed.

With respect to testing tasks discussed in T3.1, we can think of two levels where

solvers are used: step-level and task-level. Recall that a testing task consists of

a sequence of high-level steps followed by an assertion of the correctness

condition to check. Each high level step is essentially a goal for the test-agent,

which may be non-trivial to solve, and therefore having a solver would be useful.

Pathfinding related solvers are examples of typical step-level solvers. In

addition to this, we also consider solvers that can construct the sequence of

steps itself so that the tester only needs to specify what to test, and leaving it to

the agent to figure out the sequence of steps needed to get to a relevant state

on its own. For example, an online solver can do this (see below), whereas a

learning based solver can be used for solving goals in both levels, as long as

there is enough data to train the solver.

The following types of solvers are being developed in T3.2:

● Graph-based pathfinding and exploration algorithm. A pathfinding

algorithm is used to plan a path in a virtual world. A test agent can then

follow the path to auto-navigate from one location in the world to

another. A graph-based algorithm requires a graph to be constructed,

representing the navigable parts of the world, but once such a graph is

available, pathfinding can be done very efficiently. An exploration

algorithm is used to explore the graph. This is useful when the agent

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

11

needs to find a certain entity in the world, if its location is not known

upfront4.

● Reasoning-based solver, e.g. using Prolog as a reasoning engine. The

use of Prolog is pretty common in implementation of intelligent agent

frameworks, e.g. as in GOAL and 2APL. Prolog allows reasoning rules

to be formulated, thus allowing a running agent to use them for making

decisions. Among other things, this can be a decision to deploy a new

subgoal that would help the agent to solve its main goal.

● Model-based solvers. This kind of solver can solve a goal provided a

behavior model M is given. This is still under development and is

scheduled to be finished in year-3.

● Online solvers. An online solver tries to solve a goal by actually trying

different interactions on the SUT, usually following a certain heuristic.

While an online solver is computationally more expensive, it has an

important benefit that it does not need a model. We will also investigate

its use for constructing a behavior model, and hence allowing model

based solvers to be used for subsequent testing tasks (thus combining

the advantages of both approaches).

● Learning algorithm. A SUT-specific problem can be expressed as an

environment for Reinforcement Learning by formalizing it as a Markov

Decision Process (MDP) with states, actions and reward. Developers

need to implement this formalization with the commonly used (OpenAI)

Gym interface. Then, a Deep Reinforcement Learning (DRL) agent can

be used to solve the SUT-specific goal. Whereas DRL agents are

generic and adapt to many definitions of states, actions and rewards,

they are computationally extensive during their training phase and may

require careful parameter tuning. On the other hand, the DRL agent will

explore the SUT freely during its training phase, in a way that was not

planned by the developer. This can prove useful for coverage analysis,

or to learn complex behaviors.

What has

been done

until the

second year:

results

● A* Pathfinding has been implemented in the Framework, and along with

it a frontier-based graph exploration algorithm. While these algorithms

are not not novel, their use in the context of automated testing is actually

not much discussed in the literature, so we also wrote a paper about this

subject; see below.

● A Prolog engine has been integrated to iv4xr agents so that it can be

used for goal solving over a model M, if the model can be encoded as

Prolog facts and rules.

4 Even if the location is known, we may not want to rely on its location to find it as this location may

change when developers decide to change the world (which happen often, at the development time).
Tests are more robust if they are not location-fixed.

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

12

● A Model Based Testing (MBT) package has been developed. The

package allows models to be formulated in terms of extended Finite

State Machines (EFSM). The package includes implementation of a

number of search algorithms, serving as model-based solvers. A study

on its performance (as a solver) has been conducted. The results are

published (see below).

● An initial online solver algorithm was designed and implemented. Its

performance has been studied and the results are published (see

below).

● A plugin to the iv4xr core Framework aimed at defining Deep

Reinforcement Learning environments with the SUT has been

developed. It is compliant with the widely used Gym interface in RL

Research. An RL environment for the THA-AVS powerplant intrusion

pilot has been developed thanks to this plugin. The TD3 algorithm has

been implemented and adapted to solve a simplified version of this

environment that shares the same state, observation and reward model.

The results are published (see below).

Where are

these results

and how to

use them

● Graph-based pathfinding (A*) and exploration are implemented in

the Framework-core. The Framework-core can be obtained here:

https://github.com/iv4xr-project/aplib

APIs Reference is provided as part of the APIs reference of the

Framework-core:

http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/

apidocs/

The key classes are Navigatable and AStar in the package

eu.iv4xr.framework.extensions.pathfinding. Automated exploration is

provided by the class SurfaceNavGraph in the same package.

Paper: Navigation and Exploration in 3D-Game Automated Play

Testing, by Prasetya, Volhol, Tanis, et al., in the proceedings of the

11th ACM SIGSOFT International Workshop on Automating TEST

Case Design, Selection, and Evaluation, co-located at the ACM Joint

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE), 2020.

Pdf: https://arxiv.org/pdf/2009.07015

● Prolog engine. A prolog engine has been integrated into the iv4xr

Framework. The Framework can be obtained here:

https://github.com/iv4xr-project/aplib

https://github.com/iv4xr-project/aplib
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
https://arxiv.org/pdf/2009.07015
https://github.com/iv4xr-project/aplib

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

13

APIs Reference is provided as part of the APIs reference of the
Framework-core. This temporarily hosted here (waiting for a better
solution, e.g. to be hosted in Jitpack):
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/
apidocs/

The key class is PrologReasoner, in the package nl.uu.cs.aplib.agents.
The class provides APIs to add facts and rules to the Prolog engine to
form a model, and how to query the model.

A tutorial on using the Prolog engine is linked from this documentation
on agent programming in the Framework-core:

https://github.com/iv4xr-
project/aplib/blob/master/docs/agentprogramming.md

● Online solver: the first algorithm and the results of our first study can

be found in this paper:

Using an Agent-based Approach for Robust Automated Testing of

Computer Games, Samira Shirzadehhajimahmood, Wishnu Prasetya,

Frank Dignum, Mehdi Dastani and Gabriele Keller. In the 12th ACM

SIGSOFT International Workshop on Automating TEST Case Design,

Selection, and Evaluation, co-located at the ACM Joint European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE), 2021.

Pdf: https://zenodo.org/record/5208858#.YR_3UI4zaiM

● The iv4XR plugin for defining Reinforcement Learning environments

with the SUT is available in the github repository:

https://github.com/iv4xr-project/iv4xr-rl-env

The Python connector for DRL Agents and the implementation of the

TD3 algorithm as a goal solver are available in the github repository:

https://github.com/iv4xr-project/iv4xr-rl-trainer

Details about the approach and illustrations of usage are available in

both projects’ README and Wiki

Plan for the

next year

1. Implementing model-based goal solvers.

2. Developing a more advanced online algorithm that can also construct

models.

3. Re-implementing the online solvers from their separate projects into the

Framework.

4. Increasing the performance of the current RL Agent and transitioning to

MAEV’s final target scenario.

http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
https://github.com/iv4xr-project/aplib/blob/master/docs/agentprogramming.md
https://github.com/iv4xr-project/aplib/blob/master/docs/agentprogramming.md
https://zenodo.org/record/5208858#.YR_3UI4zaiM
https://github.com/iv4xr-project/iv4xr-rl-env
https://github.com/iv4xr-project/iv4xr-rl-trainer

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

14

TASK 3.2 : EXPLORATION AGENTS

Short

introduction

to the task

The second type of FTAs focus on exploring the virtual environment. Like Goal

Solving FTAs, exploratory FTAs observe the WOM to obtain the information of

the reachable entities. However, the decisions on what to test are not based on

following specific instructions, instead, the goal is to explore. Exploratory FTAs

perform a non-sequential exploration of the environment, and verify the behavior

of the system while trying to learn potentially interesting actions.

Exploratory FTAs in iv4XR are based on the TESTAR tool that existed before

the project and was a result the FP7 project FITTEST5. An overview paper6 of

the current state of the art of the tool has been published in the STVR journal in

2021. Although the uses for VR/XR systems as investigated in this project have

not been described yet in the paper, we did add acknowledgement to the iv4XR

project to the paper (together with many other projects and people). That is

because several revisions of the paper have been made during iv4XR project

execution.

TESTAR7 is an open source tool for automated testing using a scriptless

approach. The underlying principle of TESTAR is: generate test sequences of

(state,action)-pairs by connecting to the System Under Test (SUT) in its initial

state and continuously select an action to bring the SUT in another state and

check oracles (see Figure T1).

Figure T1: TESTAR operational flow

5 https://cordis.europa.eu/project/id/257574
6 https://onlinelibrary.wiley.com/doi/full/10.1002/stvr.1771
7 TESTAR, Test your system from the GUI: https://testar.org/

https://cordis.europa.eu/project/id/257574
https://onlinelibrary.wiley.com/doi/full/10.1002/stvr.1771
https://testar.org/

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

15

What has

been done

until the

second

year:

results

1. The iv4XR plugins have been integrated into TESTAR allowing the tool to

become an exploratory FTA for iv4XR SUTs.

Plugins that have been integrated until the delivery of this deliverable are: WOM

for LabRecruits and the WOM for SE systems.

The new iv4XR module allows TESTAR to detect the state (TESTAR step 1) by

extracting the information of the existing XR/VR entities. Figure T2 shows the

new implementation, LabRecruitsProcess and SpaceEngineersProcess classes

contain the functionality to launch the corresponding SUTs respectively, create

the environment that allows to obtain the WOM and execute interaction

commands, and create a test agent to be able to execute goal actions. Then

LabStateFetcher and SeStateFetcher use the environment to observe the WOM

and create the State and the Widget-Entity tree.

Figure T2: TESTAR iv4XR state module

In order to derive actions and interact with XR/VR systems (TESTAR step 2),
the new iv4XR module also defines two new types of actions, something that we
can observe in Figure T3. An actionCommand is the simplest interaction that the
SUT plugin allows to perform (eg. move), and the actionGoal are the SUT
specific tactics and goals that a test agent can execute (eg. navigate to entity).

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

16

Figure T3 : TESTAR iv4XR action module

2. To enhance step 3 of TESTAR, the action selection, we have implemented a

first version of a Reinforcement Learning (RL) framework. This RL uses the

information of the existing states and executed actions to calculate and assign

rewards values and learn from them to better select actions. Rewards that have

been implemented (but not yet evaluated) are based on the heuristic that actions

that cause a lot of state change lead to good testing.

We are currently investigating ideas to be applied on XR systems to assign

rewards for better action selection, e.g. for LabRecruits is interesting to reward

the states that contain interactive buttons. And we want to also investigate the

RL approach with free exploration strategies for those XR systems that do not

offer a default navigation map.

3. TESTAR integrates, by default, generic oracles (TESTAR step 6) that allow it

to verify the robustness of the system. These oracles allow TESTAR to detect if

the SUT process has crashed or hung, or if the SUT state, process or external

log file (as in the case of SE) contains an exception message.

4. TESTAR is capable of inferring a state model while exploring LabRecruits and

SE environments. This model allows the tool to remember what states were

discovered and which actions were executed, something that helps to improve

the action selection. Extensions related to oracles specific for the SUts in the

project, are planned for the coming year.

TESTAR state model was originally designed for traditional Graphical User

Interfaces (GUI) desktop applications. In most desktop applications, the GUI

state contains all the available widgets to interact with. However, for XR systems,

determining the XR state and reachable entities are based on the observation

range and position of the agent, something that can change constantly with

agent movements.

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

17

For this reason, TESTAR state model is being extended with the concept of

navigational state (see Figure T4). The objective of this new NavigableState is

to allow TESTAR to explore the navigable positions of the environment as it

saves the information of which entities are reachable, then execute an interaction

action defined as NavigableAction (eg. open a door by interacting with a button),

to continue with a new exploration of the available state positions.

Figure T4 : TESTAR iv4XR navigable state module

Where are

these

results and

how to use

them

1. TESTAR FTA with the results described above can be found on github:

https://github.com/iv4xr-project/TESTAR_iv4xr

a. RL framework: https://github.com/iv4xr-

project/TESTAR_iv4xr/tree/v3.2/testar/src/nl/ou/testar/Reinforceme

ntLearning

b. Navigable State branch:

https://github.com/iv4xr-project/TESTAR_iv4xr/tree/master-

navigable-state

c. LabRecruits instructions: https://github.com/iv4xr-

project/TESTAR_iv4xr/wiki/LabRecruits-execution-instructions

d. SpaceEngineers instructions: https://github.com/iv4xr-

project/TESTAR_iv4xr/wiki/Space-Engineers-execution-instructions

2. Videos are here:

a. TESTAR download instructions

i. https://www.youtube.com/watch?v=SNUoLFrTmG0

b. TESTAR interaction with LabRecruits

https://github.com/iv4xr-project/TESTAR_iv4xr
https://github.com/iv4xr-project/TESTAR_iv4xr/tree/v3.2/testar/src/nl/ou/testar/ReinforcementLearning
https://github.com/iv4xr-project/TESTAR_iv4xr/tree/v3.2/testar/src/nl/ou/testar/ReinforcementLearning
https://github.com/iv4xr-project/TESTAR_iv4xr/tree/v3.2/testar/src/nl/ou/testar/ReinforcementLearning
https://github.com/iv4xr-project/TESTAR_iv4xr/tree/master-navigable-state
https://github.com/iv4xr-project/TESTAR_iv4xr/tree/master-navigable-state
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki/LabRecruits-execution-instructions
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki/LabRecruits-execution-instructions
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki/Space-Engineers-execution-instructions
https://github.com/iv4xr-project/TESTAR_iv4xr/wiki/Space-Engineers-execution-instructions
https://www.youtube.com/watch?v=SNUoLFrTmG0

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

18

i. https://www.youtube.com/watch?v=st4FL_mMflE

ii. https://www.youtube.com/watch?v=3T4v3STVMVU

c. TESTAR interaction with Space Engineers

i. https://www.youtube.com/watch?v=C-y-jV82K50

ii. https://www.youtube.com/watch?v=HKWsjWV0hmo

3. Published papers are:

a. Deploying TESTAR to Enable Remote Testing in an Industrial CI

Pipeline: A Case-Based Evaluation, Pastor Ricos, Fernando and

Aho, Pekka and Vos, Tanja and Torres Boigues, Ismael and Calas

Blasco, Ernesto and Martinez Martinez, Hector, in 9th International

Symposium on Leveraging Applications of Formal Methods, ISoLA

2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part I.

DOI: https://doi.org/10.1007/978-3-030-61362-4_31

Zenodo: https://zenodo.org/record/5111003

b. TESTAR – scriptless testing through graphical user interface, Tanja

E. J. Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-

Valdes, Ad Mulders, in Software Testing, Verification and Reliability,

Volume 31, Issue 3 Special Issue:New Generations of UI Testing,

May 2021, DOI: https://doi.org/10.1002/stvr.1771

Plan for the

next year

● Experiment with different RL approaches

● Extend generic oracles to adapt them to XR use cases

● Investigate appropriate abstraction mechanisms for XR systems

● Study the complementarity of TESTAR navigational state with MBT

coverage tool (Task 3.4 : Coverage)

TASK 3.3 : DEALING WITH HAZARDOUS ELEMENTS

Short

introduction

to the task

Hazardous entities are entities in the virtual world that may block or even

sabotage an agent’s progress or even cause it to fall into an inescapable stuck

state. To deal with them the agent needs to be actively aware of their threat and

apply countermeasures.

What has

been done

until the

second

year:

results

● Within the FTAs that focus on SUT Goal Solving, where we use the Test

Specification Language (TSL) developed in Task 3.1 (see D3.1 - “Test

Specification Language”), agents can take deliberations about which

strategies will allow them to navigate and interact with different entities

to solve their goals.

https://www.youtube.com/watch?v=st4FL_mMflE
https://www.youtube.com/watch?v=3T4v3STVMVU
https://www.youtube.com/watch?v=C-y-jV82K50
https://www.youtube.com/watch?v=HKWsjWV0hmo
https://doi.org/10.1007/978-3-030-61362-4_31
https://zenodo.org/record/5111003
https://doi.org/10.1002/stvr.1771

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

19

● Solving goals to test specific tasks, means that dealing with hazardous

elements (Task 3.3) will not be very different from dealing with other XR

application elements.

● Consequently, the goal solving FTA can already handle these hazardous

elements which completes Task 3.3 and its inclusion in the FTA

prototype.

This task has finished.

Where are

these

results and

how to use

them

● LabRecruits tactic library: https://github.com/iv4xr-

project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.ja

va

Plan for the

next year

Active development of this task is officially completed. However, in this final year

of the project, partners are expecting maintenance updates of the tactics in the

iv4XR framework.

TASK 3.4 : COVERAGE

Short
introduction to
the task

While the basic task of solving a test goal by the FTA is handled in Task 3.2,
in this task the objective is to measure the coverage of the tests to see how
good they are in exercising the system under test (SUT). Furthermore, the
functionality of the FTA is enhanced in order to increase their efficacy in
achieving higher levels of coverage.

The activities in this task are focused along two main lines: 1) define
reasonable metrics for measuring coverage that is applicable to all the use
cases we have in the project, and 2) develop test generation strategies that
increase the coverage obtained from the tests.

For the first point, different notions of coverage are explored and being
explored in such a way that test generation could be geared towards
achieving high coverage, while for the second point approaches based on
search as well as reinforcement learning are explored.

Thales SIX developed its approach on coverage with Diversity RL. The main
idea is that we use as a foundation the DRL solver from T3.2, but we want to
achieve behavioural coverage. Whereas in a classic RL training setup we are
learning a single control policy that fulfills our goal, with Diversity RL we aim

https://github.com/iv4xr-project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.java
https://github.com/iv4xr-project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.java
https://github.com/iv4xr-project/iv4xrDemo/blob/master/src/main/java/agents/tactics/TacticLib.java

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

20

at learning a set of diverse and successful policies to fulfill our goal. In the
Thales powerplant intrusion example, this lets us obtain different intrusion
strategies due to different flaws of the defense strategy, that can thus be
corrected by the SUT user.

What has been
done until the
second year:
results

Given the nature of the SUT where the interactions with the system are fine
grained and infinitely many to enumerate in a meaningful way, we have
adopted notions of coverage that are at a higher level of abstraction.
However, such notions of coverage are still relevant for the tester as they
capture the space of interactions in the SUT. In particular, we consider
notions of coverage defined on models that represent abstractions of the
interactions in the SUT. Given such a model, we calculate the levels of
coverage on the model, in particular state and transition coverage.

State coverage measures how many of the states in the model are covered,
while transition coverage measures how many of the transitions are covered.
State coverage corresponds to how many of the entities in the SUT are
interacted with, while transition coverage quantifies how many of the user
actions have been explored. Further notions of coverage, such as path
coverage, are currently being considered. Path coverage would correspond
to a complete scenario in the SUT (e.g., one game play scenario in
LabRecruits or Space Engineers).

A tool called MBT (which stands for ‘model-based testing’) for the generation
of test suites that achieve high coverage of the model has been developed.
The MBT tool employs different search-based heuristics to generate test
cases so as to cover all possible targets in a given model of the SUT.
On the other hand, we are exploring reinforcement learning for the generation
of test cases. In particular, for Lab Recruits we have built a basic explorative
implementation that allows the FTA to explore the SUT. Similarly for the use
case from Thales on Nuclear plant intrusion simulation, reinforcement
learning is being applied.

For Thales’ Diversity RL approach, we based our work on the QD-RL paper.

QDRL maintains a population of agents that are designed to satisfy both

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

21

Quality characteristics, being efficient at solving the task at hand, and

Diversity characteristics, proposing agents that display a variety of behaviors.

QDRL is an iterative algorithm that selects the most promising agents in the

current population and mutates them to create new agents. The most

promising agents are the one in the Pareto front in the two dimensional space

where agents are represented by their performance and diversity pair. Half of

the selected agents are mutated so as to maximize their quality while the

other half optimizes its diversity score. This mutation is done using state of

the art DRL techniques namely using the update criterion of TD3. Note that

making TD3 work in the maze environment was carried on successfully as

part of Task 3.2.

Our implementation of the QDRL paper differs from the original version as

the objectives are slightly different. While the objective of vanilla QDRL is to

find one optimal strategy by exploring diverse policies, our objective is to

output as many diverse optimal policies as possible. This motivates why,

when comparing the trajectories generated by the policy to determine

diversity scores, our version compares the whole trajectories instead of just

the final state (position) of the agent, therefore comparing the behaviours to

navigate the maze instead only what the policies were able to achieve.

Our current implementation of QDRL is capable of outputting multiple

successful policies in a simple maze environment without guards.

Where are
these results
(paper, github,
etc)

● The combined application of model-based and search-based test
generation for maximizing coverage has been presented at the 13th
Symposium on Search-Based Software Engineering (SSBSE). The
data and replication material accompanying the publication are
available in the project Zenodo repository:
https://zenodo.org/record/5140432

● The MBT tool source code is available in the project github
repository, together with all the necessary resources and
documentation to execute it:
https://github.com/iv4xr-project/iv4xr-mbt

● The implementation of reinforcement learning for test generation
applied to Lab Recruits is also available in the project github
repository:
https://github.com/iv4xr-project/iv4XR-FTA-RL

● The implementation of the QD-RL algorithm for behavioural
coverage is available in the github repository:
https://github.com/iv4xr-project/iv4xr-rl-trainer
Details about the approach and illustrations of usage are available in
the project README and Wiki

How can they
evaluate/use

● Usage instructions for the MBT tool are detailed in the readme page:
https://github.com/iv4xr-project/iv4xr-mbt/blob/master/README.md

https://zenodo.org/record/5140432
https://github.com/iv4xr-project/iv4xr-mbt
https://github.com/iv4xr-project/iv4XR-FTA-RL
https://github.com/iv4xr-project/iv4xr-rl-trainer
https://github.com/iv4xr-project/iv4xr-mbt/blob/master/README.md

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

22

these results
(what is there
and what
should they do
to evaluate or
use it)

Moreover, the MBT tool provides help on the various options
available at runtime, suffices to simply run the tool without any
parameters and a help page should be displayed.

● MBT performs:
○ Coverage driven abstract test generation from a given EFSM

model
○ Concretization of the abstract tests and execution on the

system under test (Lab Recruits)
○ Mutation analysis of the generated tests to assess their fault

finding potential.
● Experimental results are available from our zenodo repository:

https://zenodo.org/record/4769901

What is the
plan

● Enhancement to the MBT tool
● Finalize RL-based coverage driven test generation and perform

evaluation
● Evaluate coverage effectiveness on iv4XR use cases, beyond Lab

Recruits
● Add support for multi agent environments
● Scale up the results for QDRL: progress to the maze environment

with guards, then the power plant environment. Evaluate different
diversity metrics and adapt it to consider guard detection events
when the guards behavior is not fully deterministic

TASK 3.5 : MULTI AGENT TESTING

Short
introduction
to the task

Many XR systems allow the simultaneous interaction of multiple users in the

same environment. This implies the need to verify the correct interaction of

multiple users, since they can influence each other. This task is focused on

extending the iv4XR framework to allow the communication of multiple agents

in runtime. There are two main objectives for this task:

- Allow the definition of test cases that involve simultaneous interactions,

collaboration or confrontation of multiple agents.

- Improve entity-search and exploration performance by coordinating a group

of agents to achieve a common goal.

What has
been done
until the
second year:
results

In order to allow the communication of multiple agents, the iv4XR framework

introduces a concept called communication node. Agents can register to such

a node, which then facilitates communication between these agents. An agent

can then send a message to the node to communicate a desired event. The

message can be sent to a specific agent, a group of agents (identified by a

common role) or broadcasted to all agents registered to the same node.

https://zenodo.org/record/4769901

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

23

The example below shows how two agents are registered to a node:

ComNode communication = new ComNode();
var agentOne = new LabRecruitsTestAgent("AgentOne","")
. attachState(new BeliefState())
. attachEnvironment(env)
. registerTo(communication);
var agentTwo = new LabRecruitsTestAgent("AgentTwo","")
. attachState(new BeliefState())
. attachEnvironment(env)
. registerTo(communication);

To provide the functionality to the agents to decide whether to send a message
or wait to receive them, the tactical-goals implementation has been extended
as well as the TSL language that allows users to construct test cases. The
example below shows how an agent can send a message to another specific
agent. And how the other agent is able to receive the information of this
message:

agentOne.getState().messenger()
.send("AgentOne", 0, MsgCastType.SINGLECAST, "AgentTwo", "blabla");

agentTwo.getState().messenger()
.retrieve(M -> M.getMsgName().equals("blabla"));

For LabRecruits, we have used a multi-agents implementation together with

machine learning techniques to create both collaborative and non-collaborative

pairs of socio-emotional test agents (SETAs). These SETAs were then used by

WP4 to explore ways of measuring collaboration between agents or real users,

and to propose a method of evaluating whether a scenario is collaborative or

not.

Use cases:

As a multiplayer game, Space Engineers requires occasional “Mass testing”

wherein a large group of players from the closed beta test group connect to a

single server and play. The purpose of this is to check the stability of the server

and underlying engine. These tests require some coordination, however, in

order to get enough numbers and also require some preparation in terms of

measurements to take and recording infrastructure to maximise the opportunity.

The current plugin can emulate the actions of a single player using an SE client

connected to the game server. However, this is not all that efficient as the game

has been designed with the assumption of one-player-per-client, which would

mean that n automated clients would need n copies of the game and

subsequently n running instances of the framework.

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

24

Work on this front has been in allowing the game to spawn multiple “NPC”

engineers and controlling them through the same plugin API. This way, we can

host multiple agents on the same instance of the game and process their

actions. Because of the above assumption, these NPC agents are not as

capable as the “player agent”, so the current focus on the multi-agent side is in

emulating the actions of NPC agents so that they can perform the same actions

as the player agent.

Thales-Six

With its Diversity RL approach, Thales trains multiple agents, but each agent

interacts in its own environment. We either use the “reset” capability of the

environment to have successively agent 1, agent 2, …, agent N act with the

environment; or we use parallel instances of SUT and iv4xr to have one

environment instance by agent. For now the first approach with the “reset”

function is implemented.

In their training procedure, the agents share a common interaction memory,

referred as Replay Buffer in the Deep Reinforcement Learning domain, that is

exploited for their model updates. The adapted QD-RL algorithm also manages

the evolution of the agent population to have them explore the state space

efficiently, thanks to the diversity criterion that emphasizes the difference

between two agents’ trajectories.

GWE

Many engineering monitoring projects are so complex that the site is broken

down into sub-sites, each of which have their own hosting server which

connects to the sensors for that area.

We used the same hierarchical approach for these types of complex sites, to

trigger initial multiple agents for each sub-site, each of which can then further

analyse the sensors at that sub-site.

Projects containing a single site/location are also processed by multiple agents

as our server-based structure already caters for multi-threaded access to the

large volumes of sensor data.

Our JAVA tool can detect simple sensor errors such as flatlines, jitter, missing

values, calibration errors, as well as more complex errors such as formulae-

based readings being invalid due to one or more errors in any sensor which is

used by the formulae. When an initial agent discovers errors or potential errors,

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

25

further agents are created to analyse those parts of the data or sensor

parameters in further detail, using a separate process.

Where are
these results
and how to
use them

● Aplib multi agent package:
https://github.com/iv4xr-
project/aplib/tree/1.4.0/src/main/java/nl/uu/cs/aplib/multiAgentSupport

● Aplib multi agent tutorial: https://github.com/iv4xr-
project/aplib/blob/master/docs/manual/tutorial_3.md#multi-agent

● SE: https://github.com/iv4xr-project/iv4xr-se-
plugin/blob/v0.4.0/JvmClient/README.md#multiple-characters

● Usage of SETAs to evaluate whether a LabRecruits scenario is
collaborative or not. “Collaboration analysis in multi-player based
simulations” https://fenix.tecnico.ulisboa.pt/cursos/meic-
t/dissertacao/846778572212536

Plan for the
next year

● Add multi-agent support into the MBT tool for coverage (Task 3.4 :

Coverage)

● SE will implement multi-agent test cases

● Thales-Six will train and experiment with Diversity multi-agent RL
approach

● TESTAR distributed state model inference:

Because an in-depth exploration of a virtual environment requires the execution
of a large number of actions, we want to divide and coordinate the execution of
these actions among multiple TESTAR instances to speed up the exploratory
process.

In order to do that, we are developing a framework in the TESTAR tool that
allows the inference of a state model in a distributed way. Multiple TESTAR
instances coordinate their action selection while exploring the same SUT by
using shared knowledge of a state model that remains in a centralized
database.

https://github.com/iv4xr-project/aplib/tree/1.4.0/src/main/java/nl/uu/cs/aplib/multiAgentSupport
https://github.com/iv4xr-project/aplib/tree/1.4.0/src/main/java/nl/uu/cs/aplib/multiAgentSupport
https://github.com/iv4xr-project/aplib/blob/master/docs/manual/tutorial_3.md#multi-agent
https://github.com/iv4xr-project/aplib/blob/master/docs/manual/tutorial_3.md#multi-agent
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/v0.4.0/JvmClient/README.md#multiple-characters
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/v0.4.0/JvmClient/README.md#multiple-characters
https://fenix.tecnico.ulisboa.pt/cursos/meic-t/dissertacao/846778572212536
https://fenix.tecnico.ulisboa.pt/cursos/meic-t/dissertacao/846778572212536

D3.3 – 2nd prototype of Functional Test Agents (FTAs)

WP3-D3.3 iv4XR

26

