

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D3.2 – 1st prototype of Functional Test Agents (FTAs)

iv4XR – WP3 – D3.2

Version 1.5

December 2020

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 1

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2020

Actual Date 30/12/2020

Document Author/s Fernando Pastor (UPV), Tanja Vos (UPV), Wishnu Prasetya

(UU), Angelo Susi (FBK), Rui Prada (INESC-ID), Jeremy Cook

(GWE), Manuel Lopes (INESC-ID)

Version 1.5

Dissemination level Public

Status Final

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 2

Document Version Control

Version Date Change Made (and if appropriate reason

for change)

Initials of

Commentator(s) or

Author(s)

1.0 11/11/2020 Initial document structure and contents FP

1.1 3/12/2020 Add LabRecruits Agents content WP

1.2 3/12/2020 Add TESTAR content FP

1.3 10/12/2020 General modifications WP, TV, FP

1.4 27/12/2020 End modifications and solve comments WP

1.5 30/12/2020 Final arrangements for submission RP

Document Quality Control

Version

QA

Date Comments (and if appropriate reason for

change)

Initials of QA Person

1.0 13/11/2020 Initial comments and section assignment TV

1.2 7/12/2020 Content review and comments TV

1.3 14/12/2020 Initial comments RP

1.3 16/12/2020 Grammar and continuity review JC

1.3 17/12/2020 Review AS

1.3 21/12/2020 Comments and minor edits RP

1.3 22/12/2020 Review ML

Document Authors and Quality Assurance Checks

Author

Initials

Name of Author Institution

TV Tanja Vos UPV

RP Rui Prada INESC-ID

WP Wishnu Prasetya UU

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 3

FP Fernando Pastor UPV

AS Angelo Susi FBK

JC Jeremy Cook GWE

ML Manuel Lopes INESC-ID

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 1

TABLE OF CONTENTS

Executive Summary 2

1. Introduction to Functional Test Agents (FTAs) 2

2. Navigation 4

3. FTA’s: Goal Solving 5

3.1. LabRecruits Agents 6

4. FTA: Exploration 7

4.1. TESTAR Tool 7

4.2. TESTAR FTA 8

5. Outputs 9

Acronyms and Abbreviations

FTA Functional Test Agent

SUT System Under Test

XR Extended Reality

AI Artificial Intelligence

WOM World Object Model

API Application Programming Interface

RL Reinforcement Learning

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 2

EXECUTIVE SUMMARY

This deliverable D3.2 reports the progress related to the Functional Test Agents (FTAs). It

explains the relevant characteristics of the first prototype and version of the FTAs, describes the

integration with the iv4XR framework and the demo System Under Test (SUT), and finally

presents a Goal Solving demonstration.

1. INTRODUCTION TO FUNCTIONAL TEST AGENTS (FTAS)

The purpose of this document is to reveal the first prototype of FTA’s and explain how they use

their intelligent skills to test an Extended Reality (XR) system.

To help explain the concepts behind the FTA’s we sometimes explain them in terms of examples

set in a 3D game called Lab Recruits. The game was constructed within our project to serve as a

configurable test field for AI. The idea is similar to that of Open-AI Gym and Unity Obstacle Tower.

However, Lab Recruits allows researchers to define their own game levels, and hence allowing

much more control on the kind of experiments they want to do. Some screenshots of the game

are shown in Figure 1 below.

Figure 1: some screenshots of a game called Lab Recruits that we created for the purpose of testing our

AI. Researchers can create custom game-levels using CSV files, to create custom challenges for AI.

First, beneath FTA’s ability to do automated function XR testing, we build the ability to navigate

through the XR system’s virtual world. Without this ability, the world is just too large and too fine

grained to be searched randomly. To do this efficiently, spatial navigation is implemented through

path finding algorithms over the navigation mesh1 of the XR’s virtual World Object Model (WOM).

Besides this, we can interact with entities in the virtual world, using the WOM’s interaction

commands, or specific goal commands.

1 Navigation Mesh or NavMesh is a component that represents the walkable area for an Agent in an XR
system.

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 3

Subsequently, two types of FTA’s are being developed:

● The first type of agent makes deliberations to choose the appropriate strategies that will

allow him to do goal-solving (Section 4).

● The second type of agent is intended to test the functionality of the XR system using

exploration (Section 5).

Figure 2: Different types of FTAs in iv4XR.

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 4

2. NAVIGATION

When testing some functionality F(x) in a more traditional setup such as when F is a service, we

typically proceed as follows:

● provide an instance of x as input,

● invoke F, passing to it the input we devised,

● check F’’s output.

Even in a more complicated setup e.g. when F is a functionality of a mobile-app, the workflow is

still largely the same: we locate the corresponding widget in the app, and interact on it to trigger

F and then we check the response of the app.

In the XR setup things are fundamentally different. To test realistically (from the actual user’s

perspective), “invoking” F often involves navigating the XR’s virtual (or mixed) world to actually

get to a location where F can physically be invoked. Similarly, to check its result might require the

test agent, simulating a real user, to navigate to a different location where F’s results can be

witnessed. Since a virtual world is often made to simulate physical worlds, restrictions in physical

worlds often apply in virtual worlds as well, e.g. it is not possible for an agent to walk through a

solid door, or to jump over a 3m fence. Moreover, most virtual worlds are very fine grained. The

3D space that they define is in principle infinite. No automated testing approach can deal with this

headlong.

We therefore adopt an approach known from computer games where developers provide a finite

approximation of the navigable parts of a virtual world. Typically this is provided as a graph of

adjacent triangles called a navigation mesh; see the Figure below. This mesh can often be

extracted automatically from the utilised graphic engine of the XR system. When this mesh is

given, auto-navigating from A to B can be solved with standard path finding algorithms such as

A*. Such capability is supported by our FTAs.

Figure 3: To the left we see a 3D world. The blue colored part indicates the part of this world that is

physically navigable by a virtual agent. This navigable surface can then be fragmented into connected

triangles as also shown in the left-picture. The picture on the right shows an example of such a surface.

Connected triangles form a graph (illustrated by thick lines). An agent can navigate from one triangle to

another by traversing this graph.

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 5

3. FTA’S: GOAL SOLVING

Having automated the navigation, testers are subsequently enabled to focus on formulating goal-

solving strategies at a more logical level and to use an FTA. These intelligent agents use the

framework developed in WP2 and add a new set of abilities and modules that produce solutions

to solve test goals.

For example, imagine again a small level in Lab Recruits shown in Figure 3 below. Suppose we

want to verify whether interacting with an in-game button3 is expected to open door2. The high

level testing task would be as in the previous sentence, so that is also the logical level where we

would like to be able to formulate our test strategies. Concretely though, the FTA that would

execute the task will have to navigate to button3’s location in the world to interact with it, and then

it needs to navigate towards door2’s location to at least be able to see it to confirm its state. The

automated navigation part should be hidden from the testers (they should not concern themselves

with solving such a problem). Note that automating “spatial navigation” may entail more than just

pathfinding mentioned in the previous section. e.g. the virtual agent may get stuck in some sticking

corner, due to some non-determinism in the XR system, or due to inaccuracy in the navigation

mesh. This needs to be solved by the navigation layer as well, so that testers can focus on the

logical level.

Now back at the logical level, reaching the button3 actually involves a series of interactions (e.g.

door0 and door1 should be opened first). We prefer of course that the FTA can, on its own, find

the right sequence of interactions, rather than that the tester having to spell them out. The latter

would not only cost more labour, but also results in a less robust test when later the developers

decide to change the world. Goal solving FTA’s have skills such as deliberation and learning to

observe the World Object Model (WOM), reason and decide the immediate strategy towards

solving the given goal.

Figure 4: a small level in Lab Recruits, with 4 buttons and three doors. The starting position of the agent is

shown in the blue circle.

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 6

Since a goal may contain sub-goals which have to be solved first and in a certain order, a specific

deliberation module keeps track of the current primitive sub-goal G (a goal without no further sub-

goal) that it has to solve. This module maintains a dynamic collection of strategies to deal with

various typical situations (e.g. when the agent becomes stuck or to counter a hostile entity) and

decides which strategy to be tried to solve G. Such a strategy can simply be to invoke the

navigation module to move the agent to a new position where the interactions required by G are

within the agent’s immediate reach. Or, it anticipates that solving G requires other interactions,

which it then adds as new sub-goals of G and proceeds recursively to handle these sub-goals

first.

To make strategies able to improve themselves over time, they will internally be represented as

some data structure that can be improved by a learning algorithm implemented in the learning

module.

3.1. LABRECRUITS AGENTS

LabRecruits FTA’s are the direct evolution of plain agents to which navigation and deliberation

abilities have been added for the resolution of goals. These agents accept goals expressing

testing tasks, formulated using the Test Specification Language (TSL) developed in Task 3.1 (see

D3.1), a declarative expression that allows testers/developers to define testing tasks. A simple

example is shown below, useful for testing the Lab Recruits level shown in Figure 4:

SEQ(entityInteracted("button1"),

 entityStateRefreshed("door1"),

 entityInvariantChecked(...,

 "door1",

"door1 should be open",

(WorldEntity e) -> e.getBooleanProperty("isOpen"))

)

For example, entityInteracted("button1") constructs a goal that would be solved if the test agent

manages to interact with button1, and entityStateRefreshed("door1") constructs a goal that would

be solved if the memorized state of door1 has the same timestamp as the current time (in other

words, when the state is up to date).

The whole SEQ construct above formulates a testing task that instructs the agent to interact with

button1, then it needs to update its observation on door1, and then to check the orange assertion

(expressed as a predicate) on door1. The predicate is essentially this:

 e → e.isOpen

Which means that we are checking whether door1 is open.

The strategies that solve these goals are not shown. They indeed need to be created and indeed

need to involve navigation, so that the agent can find e.g. the purple path shown Figure 4 that

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 7

leads it to button1. The actual programming of the needed strategies only need to be done once.

After that we can keep using the strategies. At the top-level, testers only need to specify tasks at

the goal-level as shown above.

4. FTA: EXPLORATION

4.1. TESTAR TOOL

TESTAR2 is an open source tool for automated testing with a scriptless approach, that emerged

to test desktop applications through the Graphical User Interface (GUI). The TESTAR approach

can be easily extended to test any event-based system under test (SUT), as long as the tool

knows how to interact with the environment. The underlying principle of TESTAR is: generate test

sequences of (state,action)-pairs by connecting to the SUT in its initial state and continuously

select an action to bring the SUT in another state and check oracles.

Figure 5: TESTAR execution flow.

The information about the states and widgets that exist in the SUT can be extracted by integrating

accessibility Application Programming Interfaces (APIs) (e.g. UIAAutomation for Windows) or

automation frameworks (e.g. Selenium Webdriver). An integration with the first version of the iv4xr

Framework has been developed that allows extracting information from virtual entities and

execute actions that send instructions back to the Framework to launch commands or solve

strategies. Essentially, the integration is achieved by treating the World Object Model (WOM)

maintained by iv4XR test agent as if it describes a set of UI widgets, exposing their state and

possible interactions on them. Figure 6 shows how the state of the Lab Recruits game would look

like to TESTAR.

2 TESTAR, Test your system from the GUI: https://testar.org/

https://testar.org/

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 8

Figure 6: TESTAR WOM Integration.

4.2. TESTAR FTA

TESTAR, and its possible decision making while discovering what happens in the system to select

and execute an action, allows this tool to play the role of an exploring FTA. While LabRecruits

agents are focused on achieving the subgoals sequence by sequence by navigating to the

entities, the objective of TESTAR agent is to carry out a non-sequential exploration of the

environment, trying to learn which are potentially interesting actions while verifying and validating

the behavior of the system.

To learn about the state of the entities in the environment and their changes after executing

actions, TESTAR is capable of inferring a State Model that contains the information about the

behavior of the XR system (see Figure 7). Depending on the objectives desired by the partners

regarding the exploration and testing of their SUTs (increase coverage, induce changes, reach

goals, etc ...), different rewards will be assigned to the actions and/or states of the inferred model,

which together with different Reinforcement Learning (RL) algorithms will allow us to improve the

selection of potentially interesting actions. This functionality will be officially introduced in the

second prototype (D3.3).

In addition, trying to improve the decision making and reduce possible RL training costs, TESTAR

is capable of being launched in listening mode, which allows listening LabRecruits agents actions

and inferring models of their navigation sequences and strategic deliberation.

D3.2 – 1st prototype of Functional Test Agents (FTAs)

WP3-D3.2 iv4XR 9

Figure 7: TESTAR Inferred State Model.

5. OUTPUTS

1. Prototypes:

a. Goal-solving Functional Test Agent for LabRecruits as part of the iv4xr

Framework: https://github.com/iv4xr-project/iv4xrDemo

b. Exploration Functional Test Agent integrating TESTAR:

https://github.com/iv4xr-project/TESTAR_iv4xr

2. Videos:

a. TESTAR Agent testing LabRecruits with State Model inference:

https://www.youtube.com/watch?v=sZkVwX9m8_s

3. Papers:

a. Navigation and Exploration in 3D-Game Automated Play Testing, by Prasetya,

Volhol, Tanis, et al., in the proceedings of the 11th ACM SIGSOFT International

Workshop on Automating TEST Case Design, Selection, and Evaluation, co-

located at the ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE), 2020.

Pdf: https://arxiv.org/pdf/2009.07015

https://github.com/iv4xr-project/iv4xrDemo
https://github.com/iv4xr-project/TESTAR_iv4xr
https://www.youtube.com/watch?v=sZkVwX9m8_s
https://arxiv.org/pdf/2009.07015

