

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D3.1 – Test Specification Language

iv4XR – WP3 – D3.1

Version 2.1

December 2020

D3.1 – Test Specification Language

WP3-D3.1 iv4XR i

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2020

Actual Date 30/12/2021

Document Author/s Tanja Vos (UPV), Wishnu Prasetya (UU), Rui Prada (INESC-ID),
Angelo Susi (FBK)

Version 2.1

Dissemination level Public

Status Final

This project has received funding from the European Union’s Horizon 2020

Research and innovation programme under grant agreement No 856716

D3.1 – Test Specification Language

WP3-D3.1 iv4XR ii

Document Version Control

Version Date Change Made (and if appropriate reason
for change)

Initials of
Commentator(s) or

Author(s)

1.0 6/11/2020 Initial document structure and contents WP, TV

1.1 10/12/2020 Draft WP

1.2 24/12/2020 Revised draft after QA comments WP

1.3 30/12/2020 Final arrangements for submission RP

2.0 19/12/2021 Initial setup for version 2 WP

2.1 28/12/2021 Updated content WP

Document Quality Control

Version
QA

Date Comments (and if appropriate reason for
change)

Initials of QA Person

1.1 17/12/2020 Comments and minor edits AS

1.1 21/21/2020 Comments and minor edits RP

2.1 29/12/2021 Comments and minor edits IS

2.1 29/12/2021 Minor edits AS

Document Authors and Quality Assurance Checks

Author
Initials

Name of Author Institution

TV Tanja Vos UPV

RP Rui Prada INESC-ID

WP Wishnu Prasetya UU

AS Angelo Susi FBK

IS Ian Saunter GWE

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 1

EXECUTIVE SUMMARY

This deliverable D3.1 presents iv4XR Test Specification Language (TSL), which is provided as
an embedded DSL in Java. The TSL will allow developers to abstractly formulate testing tasks, to
be automatically carried out by test agents. The purpose of this document is to give a summary
of the concept behind this TSL. Note that the deliverable itself (D3.1) is classified of type OTHER,
which concretely is provided as modules within iv4XR Framework. The purpose of this document
is to provide a summary of what the deliverable is about, without having to go through the source
code of the modules.

ACRONYMS AND ABBREVIATIONS

DSL Domain Specific Language

TSL Test Specification Language

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 2

1. INTRODUCTION

Figure 1 below shows the main workflow of testing with iv4xr. To test an XR system, a tester or

developer formulates the tests. In iv4xr’s terminology these are called “testing tasks”. These tasks

are then given to one or more test-agents that will then carry them out. An agent converts each

testing task given to it into a series of interactions with the XR system under test (SUT) to drive it

to certain states and to check some or all of these states for their correctness.

Figure 1: Main workflow of testing with iv4XR.

An important part of the iv4xr Framework is a so-called Test Specification Language (TSL) to

allow testers/developers to declaratively express testing tasks. This language has been

implemented as an embedded Domain Specific Language and is provided as part of the iv4xr

Framework. We will later provide pointers to where the implementation can be found. In this

document we will give a summary of the underlying concepts of this language, and some

examples to illustrate the use of this language.

The rest of this document is structured as follows:

Section 2 This introduces the basic concepts of testing tasks through an example of

a simple task.

Section 3 This section discusses how to keep testing tasks abstract.

Section 4 This section discusses TSL constructs for formulating complex tasks.

Section 5 This section discusses some key implementation aspects of TSL.

Section 6 This section gives pointers where to find D3.1 results.

Section 7 This section describes our plan with TSL in the remaining duration of the
project..

2. SPECIFYING SIMPLE TESTING TASKS

In the simplest form a testing task can be seen as an implicative formula of the form:

(1) 𝜑 → 𝜓

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 3

This specifies the task to check that all states1 of an XR system that satisfy 𝜑 should also satisfy

𝜓. The 𝜓-part is also called “invariant” or “assertion”. It represents a correctness constraint that

all states in 𝜑 are expected to satisfy. To show how this is done let us consider the following

example.

Figure 2 below shows a small level in a 3D puzzle game called Lab Recruits2. Access to different

rooms in the game is guarded by doors, which in turn can be opened/closed by toggling the correct

in-game buttons. The player’s starting position is indicated by the blue circle.

Figure 2: a small level in Lab Recruits, with 4 buttons and three doors. The starting position of the agent is

shown in the blue circle.

Consider a simple testing task is to verify that the initial state of button1 is set to “off”. Checking

the state of an in-game entity requires however that the entity is visible to the test-agent. So the

testing task can be expressed in the format of (1) informally as follows:

 (2) “button1 is visible” → “button1 in off”

1 Since our verification approach is through testing, literally checking “all” states would not be possible,
since there will be infinitely many of them. In testing we would then have to sample the states. Note that
just randomly sampling the states is not going to work. Instead, we need to sample relevant states (states

that satisfy 𝜑).
2 https://github.com/iv4xr-project/labrecruits

https://github.com/iv4xr-project/labrecruits

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 4

Note that at the start the agent cannot actually see the button due to a wall that blocks the agent’s

sight. So, the above ‘implication’ is immediately true. But indeed this does not actually check the

intended correctness property. In general, an implication is trivially true on the states where the

antecedent is false. Checking the invariant part of such states is pointless. To make the test

meaningful we should actually formulate the implication as a sequence: first the agent should

explore the level until it gets to a state where the antecedent is true (in the above case: until

button1 is visible), and then it can check the invariant-part of the task. So concretely, the task is

formulated as follows in iv4xr using the TSL, where a sequencing operator “SEQ” is now used

instead of implication:

var testingTask = SEQ(

 entityStateRefreshed("button1"),

 entityInvariantChecked("button1",

 (WorldEntity e) → ! e.getBooleanProperty("isOn")),

)

Figure 2: a simple testing task to check the initial state of button1 in the Lab Recruits level shown in Figure

1.

The blue part above captures the 𝜑-part of the task, and the yellow part formulates the invariant

to check.

3. ABSTRACT TEST

Testers should be able to formulate testing tasks abstractly, because then less time and effort are

needed to construct them. In the example shown in Figure 2, the 𝜑-part requires the agent to find

a state where button1 is visible (it is phrased as “the entity state is refreshed” by the task). While

the formulation of the subtask is simple, carrying it out is not simple. The button is not initially

visible to the agent, so it first needs to explore the level. This requires many primitive interactions

to command the agent to travel to different positions, not to mention the calculation of which

positions should the agent explore, and in which order should they be explored. Obviously, we

want such details to be automated (to manually programme them every time would blow up the

cost of testing).

To allow the details on how tasks are to be solved to be hidden from the testers, the iv4xr agent

programming approach represents a task, in its simplest form, as a pair (g,t) where g is a so-

called goal and t is the corresponding tactic. A goal expresses the states that are desired, and a

tactic is a heuristic for the agent to drive itself to a state satisfying g. If we already have a library

of basic tactics (the red component in Figure 1), a tester only needs to specify what the goal of a

task or subtask is, and which basic tactics are to be used to achieve/solve the goal (and hence to

complete the task).

For example, suppose we have these as basic tactics: (1) navigate(e) calculates a path to an

entity e, and then drives the agent to follow this path, and (2) explore() drives the agent to explore

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 5

to unseen (but reachable) parts of the SUT’s virtual world. The example subtask

entityStateRefreshed(“button1”) in Figure 2, can now be formulated as follows:

goal(“some name”)

 . toSolve(state → state.time == state.getEntity(“button1”).time)3

 . withTactic(explore())

Figure 3: the implementation of the task entityStateRefreshed(“button1”).

Using explore() to solve the goal works because initially the button is not known to the agent.

Unfortunately, if for some reason the agent wants to check the button’s state again, then just using

explore() will not work (because the button is no longer unexplored). The following shows how

basic tactics can be combined to form a more powerful heuristic:

 FIRSTof(navigateTo(“button1”),

 explore() ,

 ABORT())

Figure 4: An improved tactic for the task in Figure 3.

The FIRSTof combinator constructs a new tactic that chooses the first enabled action of its sub-

tactics. The tactic navigateTo() is only enabled if a path to button1 can be calculated (e.g. the

purple path in Figure 1). If the button is already known (the agent has seen it), this path can be

calculated, and navigateTo() will be the tactic used to guide the agent to the button. However,

such a path does not exist at the beginning (because the agent has not seen the button yet), in

which case the tactic above then falls back to explore(). If neither navigateTo() nor explore() is

possible, the button must thus be unreachable (e.g. it could be behind a closed door), and the

tactic above falls back to ABORT(), which would abort the corresponding goal4.

Assuming a set of basic tactics are given, the above approach means that the tester only needs

to specify which composition of basic tactics he/she wants to use. Furthermore, we do not have

to repeat the formulation for goals that are similar. For example, the goal and tactic shown in

Figure 3 and 4 can be generalized for every entity e and formulated as a method

entityStateRefreshed(e) which can be reused for refreshing the agent’s belief on the state of any

entity e.

3 In this example, the time of an entity refers to the last time it was observed, whereas the time of a state
refers to the time of the most recent observation on the SUT. So the formula says that button1 was observed
in the most recent observation.
4 A higher level task then has to decide whether to give up as well, or to try a different goal, e.g. opening
a door.

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 6

The mentioned collection of basic tactics is however quite domain specific5, so the Framework

cannot provide it. The SUT developers should provide it. However, it is a one-off investment. The

tactics can then be reused for automating any number of testing tasks targeting the SUT. In WP3

we do work on reusable components that can be used across different SUTs, e.g. modules with

path finding algorithms, or modules of model-based goal solvers.

4. COMPLEX TESTING TASKS

Note first that since in iv4xr a task is represented as a goal (Section 3 above), for an iv4xr agent

“executing a task” equates to “solving a goal”, or, we also say “solving a task”.

Now, consider again the example game-level in Figure 2. Suppose that the level objective is to

escape through door2. To verify that the level is playable, we need to check whether the state

where the door is open is reachable. In the 𝜑 → 𝜓 form as in (1) this can be expressed as this

testing task:

 (3) “door2 is open” → 𝜓

where 𝜓 is some invariant to check, e.g. it could assert that the point collected by the agent should

be at least some value p. It could be simply “true” if we actually just want to check that the state

“door2 is open” is reachable.

However, unlike the previous example in Section 2, this task is more complicated to solve. Door2

is initially closed. To open it, button2 has to be toggled. However, the button is behind a closed

door (door0), so the latter must first be opened. Furthermore, if the agent manages to reach

button2, toggling it will close door0 again, causing the agent to become trapped, so the agent also

needs to toggle yet another button to leave the trap. So, solving the task (3) requires the agent to

toggle buttons and passing doors in a specific order. Finding the solution is not trivial for the agent.

For example, at the start the agent does not even know that button2 and button3 exist (because

they are not visible to the agent). Moreover, the state space would appear to the agent as a much

denser space where it is far from obvious what it should do to bring it closer to the goal state.

In WP3 we investigate algorithms (solvers) that can solve tasks automatically, under certain

assumptions6, e.g. if a behavioral model of the SUT is given. For the cases when the task at hand

is too hard for the agent (and its solvers) to solve, TSL offers a way to express a task as a

composition of subgoals. These subgoals can be seen providing waypoints towards solving the

final goal. An example is illustrated in the picture in Figure 5, where a testing task 𝜑 → 𝜓 is refined

to have three subgoals T1,T2,T3 to help the agent to solve the 𝜑 part.

5 For example, in the example game in Figure 2, a button needs to be toggled to open an in-world door. In
a different world, opening a door may require the presence of a key in the agent’s inventory. Obviously, this
is a quite different mechanic of opening doors. Even moving around can be very different. Driving an agent
that can fly in all 3D-direction, is very different than driving an agent that can only walk on a surface.
6 No general goal solver exists though, due to the Halting problem.

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 7

Figure 5: A visualisation of a testing task 𝜑 → 𝜓. Imagine that 𝜑 is hard for the agent to solve

directly. In the above task we add three subgoals T1, T2, and T3. The goal structure above directs

the agent to first solve either T1 or T2, and then continue with T3 , and then 𝜑 and 𝜓.

In our TSL, the testing task in Figure 5 is formulated as a so-called goal-structure like this:

task = SEQ(FIRSTof(T1 ,T2),

 T3 ,

 𝜑

 invariantChecked(𝜓))

A goal-structure is either a goal, or a structure that is recursively composed from smaller goal-

structures. If T1,...,Tn are goal-structures, the construct SEQ(T1,...,Tn) is a goal-structure that is

solved when all the sub-goals T1,...,Tn are solved, and moreover they are solved in the order as

given in the sequence. The construct FIRSTof(T1,...,Tn) is a goal-structure that is solved when

one of the sub-goals T1,...,Tn is solved. These subgoals will be tried one at a time in the order as

given by the sequence, up until one that succeeds is found. More on the TSL, including more

language constructs such as REPEAT, is described in the paper listed in Section 6; the paper has

been presented in the International Workshop on Engineering Multi-Agent Systems (EMAS).

As a concrete example, the testing task (3) at the beginning of this section (about verifying that

the level in Figure 2 is playable) can be refined to the task shown in Figure 6 below, formulated

in our TSL.

var testingTask = SEQ(

 entityInteracted("button1"),

 entityStateRefreshed("door0"),

 entityInvariantChecked("door0",

 (WorldEntity e) -> e.getBooleanProperty("isOpen")),

 entityInteracted("button2"),

 entityStateRefreshed("door1"),

 entityInvariantChecked("door1",

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 8

 (WorldEntity e) -> e.getBooleanProperty("isOpen")),

 entityInteracted("button3"),

 entityStateRefreshed("door0"),

 entityInvariantChecked(..."door0",

 (WorldEntity e) -> e.getBooleanProperty("isOpen")),

 entityStateRefreshed("door2"),

 entityInvariantChecked("door2",

 (WorldEntity e) -> e.getBooleanProperty("isOpen"))

);

Figure 6: A testing task to verify that the game-level in Figure 1 is playable. This comes down to

proving that the state where door2 is open is reachable. Opening the door involves solving a

puzzle, where the buttons and doors in the level has to be toggled and passed in a specific order.

The goal-structure above captures the solution. The yellow parts are invariants added expressing

that we expect the corresponding door to be open after we toggle the button that should open

them. The last invariant is the most important one, as it is that check that door2 is open.

A preliminary study on the usability of TSL is still on-going, e.g. to assess whether the current

language constructs are expressive enough to express the kind of testing tasks needed by our

Industry partners. Another important research question that this study will address is the

robustness/adaptivity of iv4xr automation. For example, suppose a developer has invested effort

to write a goal structure U to automate a testing task T. During its development, we can expect

an XR system to be changed frequently. We do not keep fixing U every time the system under

test is changed, especially if the change is either superficial or has no direct relation with the task

T itself. In other words, we want U to be robust. Assessing this is still an on-going study.

5. IMPLEMENTATION

Rather than offering TSL as its own native language, we will instead provide it as an embedded

Domain Specific Language (DSL). A DSL is a programming language or an expression language

used to formulate constructs in a certain domain, as opposed to a general purpose language, like

Java, that is intended to be used to solve problems in any sort of domain (at least by intent). HTML

is an example of a simple DSL, and SQL is a more elaborate example. Having TSL as a native

DSL (the way e.g. SQL is) would offer better programming experience for developers, but it is

also prohibitively expensive to develop and maintain. Moreover, without enough support tools

(e.g. static type checker, debugger, documentation tool) not much companies will want to use it.

We therefore choose to offer TSL as an “embedded” DSL instead. An embedded DSL embeds

the DSL in some host language. Languages like Java, Haskell, or Python are commonly used as

hosts for embedded DSLs. Rather than offering its own native language constructs, an embedded

DSL offers a set of APIs that are crafted in such a way to mimic actual language constructs. We

have embedded TSL in Java, which is a popular language in XR development. An embedded

DSL retains much of the fluency of a native DSL, but the trade off is that programmers would still

be limited by the syntax of the host language. On the other hand, the DSL’s users also get access

D3.1 – Test Specification Language

WP3-D3.1 iv4XR 9

to the host language’s (in our case Java) full features and tooling. Examples of DSLs that exploit

this approach are: the tactic DSL in the domain of theorem proving, a DSL for generating mocks

in software testing, and DSLs for building parsers.

6. D3.1 RESULTS

Below we give an overview of our D3.1 outputs:

1. Implementation. TSL is delivered as a part of the iv4xr Agent Framework. The

Framework is available in the link below:

https://github.com/iv4xr-project/aplib

Key classes for TSL are AplibEDSL and Iv4xrEDSL in the package nl.uu.cs.aplib and

eu.iv4xr.framework.

2. API Reference. It can be found here, see e.g. the key classes AplibEDSL and Iv4xrEDSL

mentioned above.

https://webspace.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/

3. Paper presenting the main concepts of this TSL has been presented in the 8th

International Workshop on Engineering Multi-Agent Systems (EMAS) 2020: Tactical

Agents for Testing Computer Games, Prasetya, Dastani, Prada, et al.:

https://emas2020.in.tu-clausthal.de/files/emas/papers-h/EMAS2020_paper_6.pdf

4. Video: https://screencast-o-matic.com/watch/cYfT0QApOT

7. PLAN

We plan to finish our preliminary assessment (as mentioned Section 4) of TSL. This will be done
using several internal demonstration projects7. For the remaining duration of the project, we will
also support WP5 in using TSL in WP5’s pilots.

7 See for example: https://github.com/iv4xr-project/iv4xrDemo

https://github.com/iv4xr-project/aplib
https://webspace.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
https://emas2020.in.tu-clausthal.de/files/emas/papers-h/EMAS2020_paper_6.pdf
https://screencast-o-matic.com/watch/cYfT0QApOT
https://github.com/iv4xr-project/iv4xrDemo

