

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D2.2 – 2nd Prototype of the iv4XR Framework

Summary Document

iv4XR – WP2 – D2.2

Version 1.3

December 2021

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR i

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/12/2020

Actual Date 29/12/2020

Document Author/s Wishnu Prasetya (UU), Fernando Pastor (UPV), Rui Prada
(INESC-ID)

Version 1.3

Dissemination level Public

Status Final

This project has received funding from the European Union’s Horizon 2020

Research and innovation programme under grant agreement No 856716

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR ii

Document Version Control

Version Date Change Made (and if appropriate reason
for change)

Initials of
Commentator(s) or

Author(s)

1.0 02/12/2021 Initial document structure and contents WP

1.1 15/12/2021 Update Reporting section FP

1.2 24/12/2021 Merging different parts WP

1.3 29/12/2021 Final formatting and minor changes RP

Document Quality Control

Version
QA

Date Comments (and if appropriate reason for
change)

Initials of QA Person

1.2 29/12/2021 Review and edits IS

Document Authors and Quality Assurance Checks

Author
Initials

Name of Author Institution

WP Wishnu Prasetya UU

IS Ian Saunter GWE

RP Rui Prada INESC-ID

FP Fernando Pastor UPV

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR iii

TABLE OF CONTENTS

Executive Summary 1

How to read this document 1

1. Where to get D2.2 and Related Materials 1

2. Architecture 3

3. iv4xr Agent-based System: Key Concepts 4

4. How to test with iv4xr 8

5. D2.2 Tasks Status and Plan for D2.3 9

5.1 Task 2.1 Agent Runtime System 10

5.2 Task 2.2 and 2.3: World Object Model and Coupling Interface 10

5.3 Task 2.4: Reporting 12

5.4 Integration 14

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 1

EXECUTIVE SUMMARY

The Deliverable D2.2 is the second prototype of the iv4XR Framework, which is an agent-based
framework designed to enable automated testing of XR systems. This prototype is operational
and has been tested with various internal case studies, though with respect to our final objective
it is still incomplete. Since Deliverable-type D2.2 is of type OTHER, this document is not D2.2.
itself, but rather a document that provides a tour on D2.2 and pointers to more detailed information
on D2.2 technical details.

HOW TO READ THIS DOCUMENT

For the readers who prefer to try the Framework first, Section 1 below provides an overview where

to find the Framework, build instructions, manuals, tutorials, etc.

The rest of the report is structured as follows.

● Section 2 presents the Framework’s top-level architecture. The Framework’s main

components will be introduced here.

● Section 3 then briefly explains the key concepts of iv4xr agent-based testing. This section

is essential as the iv4xr approach to testing is quite different. References will be given to

where relevant papers providing more comprehensive explanation can be found.

● Section 4 briefly shows a concrete example of testing with iv4xr.

● Section 5 summarizes the WP2 status in terms of the completion status of its tasks.

1. WHERE TO GET D2.2 AND RELATED MATERIALS

D2.2 -- location The current version of the Framework can be obtained from Github
here:

https://github.com/iv4xr-project/aplib

Use e.g. the latest version of the Master-branch. The project linked
above contains the Core part of the Framework. Tools from WP3 and
WP4 are presented in the respective WPs. Their integration to the
Framework is planned to take place in year-3.

D2.2 -- manuals Build Instruction for developers. In the README.md:

https://github.com/iv4xr-project/aplib#readme

Manuals explaining the concepts of iv4xr:

1. The top of the README of the Framework (see the link
above) contains an overview-list that links to different sections
of documentation, including a link to a page explaining the
concepts behind iv4xr agent programming.

2. Paper: Aplib: Tactical Agents for Testing Computer Games,

https://github.com/iv4xr-project/aplib
https://github.com/iv4xr-project/aplib#readme

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 2

by Prasetya, Dastani, Prada et al. Published in EMAS 2021,
https://link.springer.com/chapter/10.1007/978-3-030-66534-
0_2

3. The algorithm behind agents' execution loop is explained in
this paper: Aplib: Tactical Programming of Intelligent Agents.
Prasetya, 2019. https://arxiv.org/pdf/1911.04710

Tutorials. There are five tutorials on iv4xr agent programming and
using test-agents. These are linked from its README:
https://github.com/iv4xr-project/aplib#readme

API Reference. This temporarily hosted here (waiting for a better
solution, e.g. to be hosted in Jitpack):
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/apli
b/apidocs/

D2.2 -- video ● We gave a demo of iv4xr in the Tool Demonstration track of
ICST 2021 (awarded with the best presentation award). The
video of the demo is here:
https://zenodo.org/record/4661123#.YHVAsxMzZsM

● TESTAR_iv4xr demo video that shows the sequence HTML

report and the Analysis of an inferred state model.
https://www.youtube.com/watch?v=hUyLWaHoOdI

D2.2 -- demo A full example in the context of a realistic system can be found as
part of the iv4xrDemo project that demonstrates the use of iv4xr to
test a 3D maze-puzzle game. The Demo project can be found here:

https://github.com/iv4xr-project/iv4xrDemo

Look for example in the test-example

 src/test/java/agents/demo/RoomReachabilityTest.java.

D2.2 -- relevant
papers

● Aplib: Tactical Agents for Testing Computer Games. Paper by
Prasetya, Dastani, Prada et al. Published in 9th International
Workshop on Engineering Multi-Agent Systems (EMAS)
2021. Springer. URL:
https://link.springer.com/chapter/10.1007/978-3-030-66534-
0_2

● An Agent-based Architecture for AI-Enhanced Automated
Testing for XR Systems. Paper by Prasetya,
Shirzadehhajimahmood, Ansari, et al. Published in the
Workshop on Artificial Intelligence in Software Testing, co-
located with ICST 2021. IEEE. URL:
https://zenodo.org/record/4661945#.YbNcsr3MJ24

Table 1: an overview of where to get D2.2, related readings and demo.

https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2
https://arxiv.org/pdf/1911.04710
https://github.com/iv4xr-project/aplib#readme
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
http://www.staff.science.uu.nl/~prase101/research/projects/iv4xr/aplib/apidocs/
https://zenodo.org/record/4661123#.YHVAsxMzZsM
https://www.youtube.com/watch?v=hUyLWaHoOdI
https://github.com/iv4xr-project/iv4xrDemo
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2
https://zenodo.org/record/4661945#.YbNcsr3MJ24

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 3

2. ARCHITECTURE

The figure below shows the top-level architecture of the iv4xr Framework and its top-level

workflow.

Figure 1: the top-level architecture of the iv4XR Framework and its top level workflow.

The Framework consists of the framework Core and various tools that use the Core. The Core

provides the underlying agent-based concepts and programming for iv4xr. For example, it

provides the implementation of agents and their runtime system, data collection and assertions

for testing, basic agent reasoning through a Prolog engine and path planning, and also the

embedded language for specifying tests (so-called Test Specification Language in Task 3.1 of

WP3). Examples of tools are emotion models, explorative test agents1, and model-based test

generators. These tools are supplied by WP3 and WP4, while the Core is mainly built in WP22.

The design of the Framework as the integration of these components is led by WP2, while the

actual integration of the tools into the Framework will be carried out in collaboration with the

relevant WPs.

Iv4xr strives to remain neutral towards the XR technology used by the System under Test (SUT).

This ensures as wide as possible usage of the Framework. In fact, our case studies in WP5 along

with our various internal case studies all use different technologies, and we succeeded in targeting

them all despite the diversity. The neutrality does mean that SUT developers must first implement

1 This uses the tool TESTAR as an explorative agent. It targets the SUT through iv4xr’s interfacing scheme

and world representation. TESTAR is a background tool provided by the partner UPV for this project.
2 Most Core is built in WP2, except the TSL part which is built in WP3.

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 4

an interface (called Environment in Figure 1) that would let iv4xr agents control the SUT.

Additionally, a library of domain specific abstract/high-level actions need to be implemented as

well (called domain specific goals and tactics in Figure 1 ---the term goal and tactic will be

explained later). An example of such an action is the action to toggle an in-world switch.

Depending on the SUT, this action may first require the agent to first approach the switch until it

is close enough to it, and only then it can toggle the switch. Such a knowledge must come from

the domain, as there is no way the agent could know this3.

Figure 1 also shows the main workflow of iv4xr. The steps are indicated by circled numbers:

● Step ➊ (a/b): the XR developers write tests. Each test is expressed in terms of the

aforementioned domain specific goals, specifying what should be tested (e.g. a switch B

should be toggled, and this should cause some in-world lamp D to light up). In the basic

form, a developer specifies the full sequence of goals that constitute a test (1a). In the

more advanced form (1b), a tool from the Framework can be used to either generate a

whole test suite, or to generate parts of a test (so the developer can leave out some

subgoals, and a tool uses its algorithm to construct the missing subgoals). E.g. our model-

based tool can generate a full test suite, if an EFSM model4 of the SUT is provided. This

is discussed in D3.3 of WP3.

● Step ➋: assigning the testing task to an agent. Every test is essentially a composition of

aforementioned goals and tactics, structured together using the test specification

language from Task 3.1 in WP3. Section 3 will show an example. To execute the test, this

structure of goals and tactics is given to an agent.

● Step ➌: execution. When executing the goals and tactics given to it, the agent translates

them to primitive interactions with the SUT. The agent does not directly interact with the

SUT. Instead, it sends a command to the Environment component, which acts as an

interface between the agent and the SUT (the reason for this indirection was mentioned

earlier).

3. IV4XR AGENT-BASED SYSTEM: KEY CONCEPTS

In its core, the iv4xr Framework is an agent-based system. A testing task is formulated,

essentially, as a pair of (goal,tactic) for a test-agent. The goal declaratively specifies what the

task should accomplish, and the tactic is a program expressing a heuristic for

accomplishing/solving the goal. There is a fundamental difference with the traditional way of

testing, where a testing task is formulated as a step-by-step program formulating the sequence

of steps that are involved for conducting the test. When testing a highly interactive system like an

XR system, the sequence would consist of many interactions. A test that runs for 30 seconds can

easily consist of over 1000 interactions. In contrast, tests on e.g. web or applications rarely exceed

3 This side-steps the discussion that such a knowledge can perhaps be learned by the agent. The
Framework actually integrates tools for learning. This is discussed in D3.3 of WP3.
4 EFSM = Extended Finite State Machine. In adds variables to the usual FSM that the FSM’s transitions
can inspect and update. These variables can range over a finite or infinite domain.

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 5

50 interactions. XR systems also often behave non-deterministically or even adversariously

(computer games and simulators are typical examples). So, a test program also needs to

implement adaptivity heuristics to counter these effects. Programming this in the traditional way

leads to a complex and cluttered codebase. If we insist on programming our test automation like

this, in the long run this makes them expensive to make and maintain.

For example, consider a computer game whose interface offers these two primitive actions to

interact with it:

attack()

moveToward(p)

The first action causes the player-character to attack an adjacent enemy. The second moves the

player-character one frame-update towards a position p. Since only a small distance can be

covered in a single frame update, multiple calls to this action are needed to actually reach the

goal position p. A traditional test program to inspect some entity e, and deal with enemy threats

along the way, would look like this:

while(current position != e.position) {

 if (there is enemy) attack()

 else moveToward(e.position)

afterwhich, it can inspect e. To add to the complication, if e is actually not immediately visible at

the start, the test program has to be extended. The program would first need to steer the virtual

character to explore the game world, until it can see e. This would require the addition of a loop.

There may be more ‘special cases’ that need to be handled (e.g. the character might become

stuck at some obstacle), and therefore the above loop has to be extended again. The test program

above will then become very complex.

Iv4xr’s agent-based approach provides a programming paradigm that is much better suited for

programming control over highly interactive systems. An iv4xr agent executes in so-called

deliberation cycles. At each cycle it decides which primitive action to execute:

repeat

 let A = set of available actions

 let A’ = actions in A which are enabled in the current state

 decide which a ∈ A’ to be chosen

 execute a

until temination-condition

Figure 2: Each agent runs the above cycles of deliberation.

Such a loop can drive a high rate of interactions. Changing situations can be rapidly handled by

an action whose guard is tailored to identify the situations.

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 6

With such an execution model, in principle an agent can be programmed simply by giving it a set

of actions, each can be guarded to decide its enabledness on a given state. The deliberation loop

itself does not need to be programmed, since this is what the agent always does anyway5, as

seen in Figure 2. While the action-set does not need to be structured, because the actions’ guards

already determine what orders of executions are admissible, adding some degree of structuring

improves their programmability. Iv4xr therefore offers a tactical language to allow primitive actions

and the corresponding decision making to be composed in an abstract way. The same testing

task shown before would look like this in iv4xr:

FIRSTof(

 attack().on(enemy is near),

 moveToward(e))

Extending this with exploration, when e is not immediately visible, amounts to just adding an

exploration tactic to the FIRSTof construct. Similarly, if the agent can become stuck at some

obstacle, an unstuck can also be added:

FIRSTof(

 unstuck().on(the agent is stuck),

 attack().on(enemy is near),

 moveToward(e).on(e is visible),

 explore())

Figure 3: an example of tactic composition with iv4xr DSL (Domain Specific Language).

Goals

A tactic is sufficient for expressing a test that only involves navigating to and inspecting a single

entity. It is not suitable for programming a test that requires interactions with multiple entities

spread over a complex-shaped physical space, with the possibility of obstacles, hazards, or

adversaries between them. This requires planning. To express planning in iv4xr we use a goal-

structure, which is a composition of pairs (goal, tactic). Below is an example of such a plan for

testing a world entity e. Imagine that in this world, access to e is not free, e.g., because it is located

in an area that is guarded by a door/gate. So, to test e the agent would first need to open the

door, which in turn requires interactions with entities b1 and b2: Here is then a test for e, expressed

as a goal-structure:

SEQ(

 interactedWith(b1),

 interactedWith(b2),

 inspect(e))

Figure 4: an example of goal composition with iv4xr DSL (Domain Specific Language).

5 This action-based perspective of programming is similar to Back’s Action Systems or Chandy-Misra’s
UNITY.

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 7

Here, interactedWith(b) is a pair of (Gb,Tb) where G is a goal specifying the desired state (b is

interacted) and T is a tactic similar to Figure 3 to search for b in the virtual world, and interact with

it.

Dynamic goals

While Figure 4 shows how a testing-task can be formulated as a high level plan, the tester does

have to come up with the plan, e.g. to first interact with b1 and b2, before it can inspect e. It would

be nice if the agent can come up with the plan on its own. This is possible and is discussed in

WP3. The key feature from the Framework that enables this is the ability of the agent to

dynamically deploy new subgoals. This allows e.g. an on-line heuristic to be programmed where

the agent explores the virtual world and constructs plans as it goes. This is discussed in D3.3.

The architecture of an agent

Now that we have introduced the key concepts of agent-based testing with iv4xr, below we show

the architecture of an agent:

Figure 5: the architecture of iv4xr agents. An agent has its own Runtime System (RTS). The

yellow boxes are various state-like components that can be attached to it, e.g. a navigation graph

and emption. A data collection can be attached to, to facilitate data collection for later analysis.

To keep iv4xr neutral towards the technology used by the XR system under test (SUT), its agents

do not directly interact with the SUT. Rather, they control the SUT through a Java class called

Environment. This separates the Framework from whatever the technology used by the SUT, and

hence the Framework does not depend on the latter. This does mean that in order to enable

testing by iv4xr, SUT developers need to provide a concrete implementation of the class

Environment.

An agent carries its own “run time system” (RTS), which is a module that allows the agent to

accept and interpret goal structures. When the agent is run, the RTS essentially executes the

deliberation cycles in Figure 2. It keeps track which goal from the goal structure that was given to

it is the current goal to work on. When that goal is achieved it checks the goal structure to decide

which goal is to go after next. If the current goal is not achieved yet, the RTS inspects its

associated tactic to calculate which actions in the tactic are eligible for execution, and enabled in

the current state (A’ in the algorithm in Figure 2). It then chooses one to be executed.

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 8

An agent also carries its own state. E.g. this state determines which actions from the tactic of the

current goal are considered as executable. Different state components can be attached to the

agent (shown yellow in Figure 5), and thus exposed to the goals and tactics. For example an

agent may have a state component called “World Object Model” (WOM) representing the logical

state of the SUT’s virtual world. It may also have a navigation graph as a state component, to

help it plan routes to go to different places in the virtual world. It may have emotion (WP4) as a

state component, and it may have just some “State” for its own bookkeeping. The last component

of an agent is a data-collector to which the agent can report noteworthy observations (e.g. to

report anomalies and violations found during a test run) or to write tracing information. Information

collected can be immediately inspected or dumped to files for later data analyses.

Multi-agents

The Framework supports multi-agency. This means multiple agents can be deployed, and they

can send messages to each other. This is useful for testing XR systems that allow multiple users.

The feature is also useful for parallel testing. In this setup, we deploy multiple instances of the

SUT and test agents, e.g. the latter can be used to explore different parts of the SUT’s state

space, and hence speeding up the entire exploration.

Further reading

A more comprehensive explanation on iv4xr main concepts and agent programming can be
found here:

1. Aplib Concepts. Documentation In the Framework. This can be found here:
https://github.com/iv4xr-project/aplib/blob/master/docs/manual/aplibConcepts.md

2. Aplib: Tactical Agents for Testing Computer Games. Paper by Prasetya, Dastani, Prada
et al. Published in EMAS 2021, https://link.springer.com/chapter/10.1007/978-3-030-
66534-0_2

3. The algorithm behind agents' execution loop is explained in this paper: Aplib: Tactical
Programming of Intelligent Agents. Prasetya, 2019. https://arxiv.org/pdf/1911.04710

4. HOW TO TEST WITH IV4XR

Figure 5 shows a simplified setup to test with iv4xr. We deploy an agent, giving it a goal structure

that formulates a testing task as explained in Section 3. We attach this agent to an Environment

that, in turn, is connected to the SUT. Note that the SUT developers must first implement a proper

Environment, and additionally write a library of basic goals representing basic but high-level

interactions on the SUT. To give a concrete example, the Figure 6 below shows a test on a 3D

game called Lab Recruits. An IDE such as Eclipse can be used to write tests and run them. Figure

6 uses Eclipse. The SUT is visible in (1), and is being driven by the test. The testing task is

formulated as a goal structure (marked by (2) in the Figure). In this case the structure is a SEQ-

structure that takes a sequence of basic goals provided by a goal-library (called GoalLib in the

Figure) as subgoals. For example, the first subgoal says that an in-world entity called button1

https://github.com/iv4xr-project/aplib/blob/master/docs/manual/aplibConcepts.md
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2
https://link.springer.com/chapter/10.1007/978-3-030-66534-0_2
https://arxiv.org/pdf/1911.04710

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 9

needs to be interacted first, whereas the third subgoal says that it expects that the property isOpen

of an entity called door1 should then be true.

Figure 6: testing with iv4XR using Eclipse IDE. The SUT is a 3D game, visible in (1). The testing

task is formulated as a goal structure (2). In this case it is a sequence of basic goals provided by

a goal-library (called GoalLib in the Figure). A summary of the tests (pass/fail) is shown in (3).

Green means all tests succeed.

More on how to test with a test agent can be found in our tutorials. These are linked from the

README of the Framework. See: https://github.com/iv4xr-project/aplib.

5. D2.2 TASKS STATUS AND PLAN FOR D2.3

The table below gives an overview of the completion status of various tasks in WP2. Further

explanation of these tasks is given in the subsections that follow.

◻ completed ◻ implemented, but need improvement ◻ planned

https://github.com/iv4xr-project/aplib

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 10

D2.2 status Tasks and subtasks D2.3 plan

Completed. T2.1 Agent Runtime System

Completed T2.1 Multi-agent support

To be improved. T2.1 Integration with explorative functional test agents
(WP3)

Iteration to improve its coherency and
flexibility.

To do T2.1 Integration with WP3 algorithms (e.g. search-based,
reinforcement learning, model checking)

To be completed here.

To do T2.1 Integration with emotion (WP4) To be completed here.

To be improved. T2.2 World Object Model Iteration to improve its coherency and
flexibility.

To be improved. T2.3 Coupling Interface Iteration to improve its coherency and
flexibility.

Completed T2.4 Information collection and reporting

Completed T2.4 Advanced information collection

Table 2: D2.2 status and plan for D2.3. explanations of these tasks are given in the subsections

below.

5.1 TASK 2.1 AGENT RUNTIME SYSTEM

When created, each agent comes with its own instance of Runtime System (the RTS component

in Figure 5). As mentioned, the RTS essentially implements the deliberation cycle in Figure 2.

From a different perspective, the RTS interprets the goal structure H that is given to the agent. It

keeps track which goal in H is its current goal. When that goal is achieved it checks H again to

decide which goal is to go after next. If the current goal is not achieved yet, the RTS inspects its

associated tactic to calculate which actions in the tactic that are eligible for execution and enabled

in the current state (A’ in the algorithm in Figure 2). It then chooses one to be executed.

Included in the Task 2.1 is providing the multi-agent capability mentioned in Section 2. We also

add Integration to this Task, this is discussed separately in Section 5.4.

Completion status: see Table 2.

5.2 TASK 2.2 AND 2.3: WORLD OBJECT MODEL AND COUPLING INTERFACE

The ‘coupling interface’ (Task 2.3) is the interface between agents and the SUT. This interface

allows the agents to control the SUT and to observe its state. In iv4xr this interface is called

Environment (the blue component in Figure 1 and Figure 5). Towards iv4xr, this interface needs

to have a fixed structure, or else the agent does not know e.g. how to send a command to the

SUT. On the other hand, it should allow the SUT’s developers to implement this Environment in

a way that is compatible with the technology of the SUT and the ontology of this SUT’s virtual

world (e.g. some worlds may have a concept of in-world pickable items, while other worlds do not

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 11

have this concept). We make use of Object Oriented inheritance to get the flexibility, shown in the

class diagram below:

Figure 7: the design pattern for implementing the Environment component.

To implement their own Environment, SUT developers extend the pre-provided Iv4xrEnvironment

class. This allows agents to assume that it gets an instance of Iv4xrEnvironment to interact with

the SUT. E.g. the agents can then rely on the availability of the method observe() that would return

the state of the SUT, encoded as a World Object Model.

The above interfacing scheme has been implemented. Additional interfaces such as IW3DEnv

are provided, that offer the kind of methods common for interacting with certain types of XR

systems. E.g. when the XR system has a 3D virtual world, then it is sensical to offer a method to

allow the agent to travel in a straight line to some position p. The SUT developers can opt to

implement such an interface over their instance of Environment.

Task 2.2 is about designing and implementing a common representation of the SUT’s state. This

representation is called World Object Model (also called WOM; and in the Framework it is called

WorldModel). In Figure 1 and 5 it is indicated as one of the yellow (state-like) components.

Having a common representation allows agents to assume the same interface to e.g. obtain the

state of some in-world entity in the SUT and to get the properties of this entity from this state. The

representation is shown below (it is inspired by Domain Object Model, which is a common

representation of web pages):

Figure 8: a class diagram showing the structure of WorldModel (WOM). A WoldModel holds some

typical properties of the agent that owns it, such as the agent’s id and its in-world position. The

WorldModel also contains a set of WorldEntities. They represent in-world entities currently known

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 12

to the agent. Each such an entity is represented by its basic properties, such as its id and position,

and may furthermore contain sub-entities (e.g. if it is an in-world control panel, which may in turn

consist of several switches).

Completion status: see Table 2.

5.3 TASK 2.4: REPORTING

This task is meant to build a module that allows a test agent to report its finding, e.g. violations of

assertions and events that signify the covering of states of interest (useful for giving an indication

of the completeness level of the test, e.g. whether or not all pre-defined states of interest are

covered). The module is implemented. It is the data-collector component in Figure 1 and Figure

5. This data-collector can actually do more than just reporting violations. It can do so-called

instrumentation. It allows a function to be attached, which maps the SUT state (e.g. in terms of

WorldModel) to a set of numeric values. The function is sampled at every cycle in Figure 2. The

sampled data iscollected and can be saved to files which later can be subjected to data

visualization and analyses. Several standard visualization scripts are provided, e.g. to produce

time-graphs and heatmaps.

TESTAR is an iv4xr framework tool that acts as an exploratory Functional Test Agent (FTA).

TESTAR launches and connects with the SUT using an additional UIAutomation API, something

that allows the tool to detect the Graphical User Interface (GUI) in Windows environments, take

screenshots of the SUT and create visual reports.

As TESTAR explores the SUT (D3.3 contains more information about TESTAR exploratory cycle),

it creates an action-by-action HTML report and infers a state model. This tool has also been

extended with a listening implementation in order to allow the integration of goal-solving agents

and the inference of state models. Figure 9 is an extension of Figure 6 that shows the integration

of goal structures in TESTAR. Figure 10 shows the state model visualization.

Section Where to get D2.2 and Related Materials contains a TESTAR video that shows the HTML

report and analysis of the state model.

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 13

Figure 9: TESTAR tool integrated with goal solving agents. The SUT path and level to test needs

to be selected in the SUT connector field (1). The desired sequence of goals should be created

in the beginSequence method of TESTAR (2).

Figure 10: This image shows the usage of the Analysis mode by the TESTAR tool in order to

visualize the information inferred in the state model. These models contain information about the

states, entities and actions discovered in the iv4xr SUT.

Although this task has been completed, throughout the last year of the project, maintenance and

possible improvements to the reporting system are expected.

D2.2 – 2nd Prototype of the iv4XR Framework

WP2-D2.2 iv4XR 14

Completion status: see Table 2.

5.4 INTEGRATION

Ultimately, various tools produced by WP3 and WP4 need to be included into the Framework (see

the architecture in Figure 1). This means that they need to be integrated into the Framework,

which also implies that a sensical integration scheme should be prepared. We add this integration

task to WP2 under Task 2.1, in collaboration with WP3 and WP4. Currently the project has been

working on the major components separately (e.g. the Core, and each of the tools in Figure 1).

The actual integration work will be carried out together with WP3 and WP4. This integration is

scheduled in Year-3 of the project.

Completion status: see Table 2.

